leetcode Median of Two Sorted Arrays

本文介绍了一种使用二分查找法找到两个有序数组中位数的有效方法,通过调整切割点确保最终中位数的正确计算,并提供了一种更简单的寻找第k个元素的方法。

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Best Solution by Binary Search:

Before writting codes,  we should understand the following things:

  1. The median of any ascending array is (num[ceiling((len-1)/2)]+num[ceiling(len/2)])/2. Mark cut (l,r)=(num[ceiling((len-1)/2)],num[ceiling(len/2)])/2). 
  2. For two sorted arrays, the corresponding cuts are cut1(l1,r1), cut2(l2,r2). If l1<=r2 and l2<=r1, the final median is (max(l1,l2)+min(r1,r2))/2
  3. However, item 2 won't always happen. If we adjust cut1 to one direction and cut2 to opposite direction until l1<=r2 and l2<=r1, we could stil find the final median (max(l1,l2)+min(r1,r2))/2
  4. Initially, cut1(l1,r1)=(num[ceiling((len1-1)/2)],num[ceiling(len1/2)])/2), cut2(l2,r2)=(num[ceiling((len2-1)/2)],num[ceiling(len2/2)])/2), final merged array cut is (num[ceiling((len1+len2-1)/2)],num[ceiling((len1+len2)/2)])/2). The question is that if updated (l1,r1) is (num[ceiling((len1-1-x)/2)],num[ceiling((len1-x)/2)])/2), what's updated cut2 to ensure (l1,r1), (l2,r2) could find the final median? The answer is updated cut2 = (num[ceiling((len2+x-1)/2)],num[ceiling((len2+x)/2)])/2), which could be understanded as move x elements from array1 to array2 but the final median won't change
  5. Consider some corner cases:
  6. So the task becomes how to find appropriate cut index (ceiling((len1-1-x)/2), ceiling((len1-x)/2)) in order to make l1<=r2 and l2<=r1, we could do binary search ref to https://blog.youkuaiyun.com/taoqick/article/details/23260157. Understand the range of start+off is closed interval [0, len]
  7. (ceiling((len-1)/2), ceiling((len1)/2)) and (ceiling((len1)/2), ceiling((len1+1)/2)) are different and look like walking half step. It seems that we move left leg with one step and draw close the other leg. In order to support the half step and ceiling((len1-1)/2 ranging in closed interval [-1, len1-1], the search range for len1 should be closed [0,2len1]. We could finish the codes now.
import sys
class Solution:
    def findMedianSortedArrays(self, nums1, nums2):
        n1, n2 = len(nums1), len(nums2)
        if (n1 < n2):
            return self.findMedianSortedArrays(nums2, nums1)
        #You may assume nums1 and nums2 cannot be both empty
        left, right = 0, n2*2
        l1_i,r1_i,l2_i,r2_i = 0,0,0,0
        while (left <= right):

            mid = left+(right-left)//2 #range from [0, 2*n2]

            l2_i,r2_i = (mid-1)//2, mid//2 #l2_i ranges from [-1, n2-1], r2_i ranges from [0, n2]
            l1_i,r1_i = (n1+n2-mid-1)//2, (n1+n2-mid)//2 #l1_i ranges from [-1, n1-1], r1_i ranges from [0, n1]

            l2, r2 = nums2[l2_i] if l2_i >= 0 else -sys.maxsize, nums2[r2_i] if r2_i < n2 else sys.maxsize
            l1, r1 = nums1[l1_i] if l1_i >= 0 else -sys.maxsize, nums1[r1_i] if r1_i < n1 else sys.maxsize

            if (l1 > r2):
                left = mid+1
            elif (l2 > r1):
                right = mid-1
            else:
                return (max(l1, l2) + min(r1, r2)) / 2

        return (max(l1,l2) + min(r1,r2)) / 2

s = Solution()
print(s.findMedianSortedArrays([1,3],[2,4,5]))
print(s.findMedianSortedArrays([3,4,5,6],[1,2,3]))
print(s.findMedianSortedArrays([1,2],[3]))
print(s.findMedianSortedArrays([1,2],[3,4]))
print(s.findMedianSortedArrays([2,3,4],[1]))

 

Another solution:

The method of finding the kth number is easier than http://leetcode.com/2011/03/median-of-two-sorted-arrays.html . 

Take notice of A[pa - 1] instead of A[pa] because pa >= 1

class Solution {
 public:
  double findKth(int A[], int m, int B[], int n, int k) {
    if (m > n)
      return findKth(B, n, A, m, k);
    if (m == 0)
      return B[k-1];
    if (k == 1)
      return min(A[0], B[0]);
    int pa = min(m, k/2);
    int pb = k - pa;
    if (A[pa - 1] < B[pb - 1])
      return findKth(A + pa, m - pa, B, n , k - pa);
    else if (A[pa - 1] > B[pb - 1])
      return findKth(A, m, B + pb, n - pb, k - pb);
    else
      return A[pa - 1];
  }
  double findMedianSortedArrays(int A[], int m, int B[], int n) {
    int total = m + n;
    if (total % 2 == 0)
      return (findKth(A, m, B, n, total/2) + findKth(A, m, B, n, total/2 + 1))/2;
    else
      return findKth(A, m, B, n, total/2 + 1);
  }
};

 

 

 

 

 

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值