LeetCode 44 Wildcard Matching 贪心 DP

本文介绍了一种实现通配符匹配的算法,该算法支持 '?' 和 '*' 两种通配符,其中 '?' 可以匹配任意单个字符,而 '*' 可以匹配任意长度的字符序列。文中提供了贪婪算法及动态规划算法的实现,并通过多个实例验证了算法的有效性。

Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*'.

'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).

The matching should cover the entire input string (not partial).

Note:

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like ? or *.

Example 1:

Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.

Example 3:

Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.

Example 4:

Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".

Example 5:

Input:
s = "acdcb"
p = "a*c?b"
Output: false

--------------------------------------------------

Greedy Solution:

1. There is no need to refresh the status of star, staremerge. Only one star is enough, because the character(for example, 'a') always needs to match some 'a' in s. Matching the former 'a' is better than the latter 'a' in s as is illustrated in the figure. I.e., there is no need to record the matching range for every '*', the latest '*' has the largest range of choice. 

2. sbegin is refreshed when mismatch occurs and pbegin is refreshed when meeting new '*';

3. Focusing on s is better than handling the two strings at the same time. 

So the final concise code is like:

class Solution:
    def isMatch(self, s, p):
        slen, plen, i, j = len(s), len(p), 0, 0
        star = False
        while (i < slen):
            if (j < plen and (s[i] == p[j] or p[j] == '?')):
                i += 1
                j += 1
            elif (j < plen and p[j] == '*'):
                star_begin_s = i
                star_begin_p = j+1
                j += 1
                star = True
            elif (star):
                j = star_begin_p
                star_begin_s += 1
                i = star_begin_s
            else:
                return False
        while (j < plen and p[j] == '*'):
            j += 1
        if (j == plen):
            return True
        return False

Using DP, the codes look like:

class Solution {
 public:
  bool isMatch(const char *s, const char *p) {
    int slen = strlen(s), plen = strlen(p), i, j, countp = 0;
    for (const char *ptr = p; *ptr; ++ptr)
      if (*ptr != '*')
        ++countp;
    if (countp > slen)
      return false;
    bool dp[500][500];
    memset(dp,false,sizeof(dp));
    dp[0][0] = true;
    for (i = 1; i <= plen; ++i) {
      dp[i][0] = dp[i - 1][0] && *(p + i -1) == '*';
      for (j = 1; j <= slen; ++j) {
        if (*(p + i -1) == '*')
          dp[i][j] = dp[i][j - 1] || dp[i - 1][j];
        else
          dp[i][j] = dp[i - 1][j - 1] && (*(p + i -1) == *(s + j -1) || *(p + i -1) == '?');
      }
    }
    return dp[plen][slen];
  }
};

DP Solution:

f[i][j] indicates whether p[0..i] matches s[0..j]. So 

if p[i] == '*', dp[i][j] = dp[i][j-1] || dp[i-1][j]

if p[i] != '*', dp[i][j] = dp[i-1][j-1] && single match

reduce two-dimension dp to 1 dimension

class Solution:
    def isMatch(self, s, p):
        slen, plen = len(s), len(p)
        if (plen <= 0):
            return slen == 0
        if (slen <= 0):
            return all(pi == '*' for pi in p)

        f = [p[0] == '*' for i in range(slen)]
        f[0] = (p[0] == '*' or p[0] == s[0] or p[0] == '?')

        match_empty = [False for i in range(plen)] #以i结尾的p是否和s的空前缀匹配
        match_empty[0] = p[0] == '*'
        for i in range(1, plen):
            match_empty[i] = (match_empty[i-1] and p[i] == '*')
        #print(f)
        for i in range(1, plen):
            pre = list(f)
            for j in range(0, slen):
                if (p[i] == '*'):
                    #f[i][j] = f[i][j-1] || f[i-1][j]
                    tmp2 = f[j-1] if j >= 1 else match_empty[i-1]
                    f[j] = f[j] or tmp2
                else:
                    #f[i][j] = f[i-1][j-1]
                    match = (p[i] == s[j]) or (p[i] == '?')
                    tmp = pre[j-1] if j >= 1 else match_empty[i-1]
                    f[j] = tmp and match
            #print(f)

        return f[-1]
s = Solution()
print(s.isMatch("aa","a"))
print(s.isMatch("aa","aa"))
print(s.isMatch("aaa","a"))
print(s.isMatch("aa","*"))
print(s.isMatch("aa","a*"))
print(s.isMatch("ab","?*"))
print(s.isMatch("aab","c*a*b"))
print(s.isMatch("adceb","*a*b"))
print(s.isMatch("a","a*"))

 

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值