激活函数Elu、Gelu、Swish、Silu、Sigmoid

文章探讨了三种不同的激活函数在神经网络中的应用,包括ReLU的线性特性,GELU的高斯误差线性单元,以及Swish函数(又称Silu),并提供了PyTorch库中对GELU的实现链接,强调了这些函数对模型性能的影响。
部署运行你感兴趣的模型镜像

先来张效果对比图:
在这里插入图片描述

Sigmoid

不过(0,0)点:
在这里插入图片描述

ELU(Exponential Linear Unit)

在这里插入图片描述

RELU (Rectified Linear Unit)

在这里插入图片描述

GELU(Gaussian Error Linear Units)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Swish 激活函数也叫Silu

在这里插入图片描述
转载自:

  1. https://mp.weixin.qq.com/s/BY5_NKrSOMQ0o4GxWUeYKA
  2. https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
  3. https://blog.youkuaiyun.com/renwudao24/article/details/44465407

您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### Swish激活函数SiLU激活函数的关系及等价性 Swish激活函数SiLUSigmoid Linear Unit)激活函数实际上是相同的函数形式。它们都定义为 \( f(x) = x \cdot \sigma(x) \),其中 \( \sigma(x) \) 表示 Sigmoid 函数,即 \( \sigma(x) = \frac{1}{1 + e^{-x}} \)[^3]。 #### 定义上的相同性 - **Swish**:最初由 Google 提出并命名,其表达式为 \( f(x) = x \cdot \text{sigmoid}(x) \)[^1]。 - **SiLU**:也被称作 ELU 的变体之一,同样具有 \( f(x) = x \cdot \text{sigmoid}(x) \) 的形式[^5]。 因此,在数学定义上,SwishSiLU 是完全一致的。两者的差异主要体现在名称的不同及其应用场景的选择上。 #### 性能特点对比 两者共享以下特性: - **平滑性**:由于引入了 Sigmoid 函数,Swish/SiLU 均表现为平滑函数,这有助于减少优化过程中的震荡行为[^3]。 - **非单调性**:在负值区间内存在一个小幅度的正梯度,这种性质可以帮助缓解梯度消失问题,并增强模型捕捉复杂模式的能力[^3]。 尽管如此,实际应用中可能会因为实现细节或框架支持程度不同而导致细微差别。例如某些深度学习库可能对其中一个版本进行了特定优化处理从而影响最终效果表现。 以下是基于PyTorch的一个简单实现例子来展示如何构建这两种功能实际上是一样的: ```python import torch import torch.nn as nn class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class SiLU(nn.Module): def forward(self, x): return x * torch.sigmoid(x) # 测试两种模块是否相等 swish_module = Swish() silu_module = SiLU() input_tensor = torch.tensor([-2., -1., 0., 1., 2.]) print("Swish Output:", swish_module(input_tensor)) print("SiLU Output:", silu_module(input_tensor)) ``` 运行以上代码会发现对于同样的输入数据二者产生的输出结果完全一样,再次验证了他们的本质一致性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值