LeetCode 403. Frog Jump DP BFS状态重 青蛙跳

本文探讨了一只青蛙如何通过跳跃到达河对岸的问题,使用动态规划和广度优先搜索两种算法解决。给定一系列石头的位置,青蛙必须从第一块石头开始跳跃,每次跳跃的距离只能是上一次跳跃距离的基础上加减1或不变。文章详细解释了两种算法的实现过程,并提供了Python代码示例。

A frog is crossing a river. The river is divided into x units and at each unit there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.

Given a list of stones' positions (in units) in sorted ascending order, determine if the frog is able to cross the river by landing on the last stone. Initially, the frog is on the first stone and assume the first jump must be 1 unit.

If the frog's last jump was k units, then its next jump must be either k - 1, k, or k + 1 units. Note that the frog can only jump in the forward direction.

Note:

  • The number of stones is ≥ 2 and is < 1,100.
  • Each stone's position will be a non-negative integer < 231.
  • The first stone's position is always 0.

 

Example 1:

[0,1,3,5,6,8,12,17]

There are a total of 8 stones.
The first stone at the 0th unit, second stone at the 1st unit,
third stone at the 3rd unit, and so on...
The last stone at the 17th unit.

Return true. The frog can jump to the last stone by jumping 
1 unit to the 2nd stone, then 2 units to the 3rd stone, then 
2 units to the 4th stone, then 3 units to the 6th stone, 
4 units to the 7th stone, and 5 units to the 8th stone.

 

Example 2:

[0,1,2,3,4,8,9,11]

Return false. There is no way to jump to the last stone as 
the gap between the 5th and 6th stone is too large.

---------------------------------------------------------------------------------------------------

BFS is straightforward, take care the dup states:

class Solution:
    def canCross(self, stones) -> bool:
        sset = set(stones)
        if (1 not in sset):
            return False
        elif (stones[-1] == 1):
            return True


        layers, vis = [[(1,1)], []], {(1,1)}
        c, n, target = 0, 1, stones[-1]
        while (layers[c]):
            for cur,ck in layers[c]:
                for nxt,nk in [(cur+ck,ck), (cur+ck-1,ck-1), (cur+ck+1,ck+1)]:
                    if (nk >= 0 and cur < nxt and nxt <= target and (nxt,nk) not in vis and nxt in sset):
                        if (nxt == target):
                            return True
                        layers[n].append((nxt,nk))
                        vis.add((nxt,nk))
            layers[c].clear()
            c, n = n, c
        return False

DP:

use f[i][j] to stands whether stones[i] could be visited by step j. So use defaultdict to diminish the size of dict:

from collections import defaultdict

class Solution:
    def canCross(self, stones) -> bool:
        dic = defaultdict(set)
        dic[0] = {0}
        for stone in stones:
            for k in list(dic[stone]):
                for nk in [k-1,k,k+1]:
                    if (nk>=0):
                        npos = stone+nk
                        dic[npos].add(nk)
        return dic[stones[-1]]
s = Solution()
print(s.canCross([0,1,3,5,6,8,12,17]))
print(s.canCross([0,1,2,3,4,8,9,11]))

 

课程设计报告:总体方案设计说明 一、软件开发环境配置 本系统采用C++作为核心编程语言,结合Qt 5.12.7框架进行图形用户界面开发。数据库管理系统选用MySQL,用于存储用户数据与小精灵信息。集成开发环境为Qt Creator,操作系统平台为Windows 10。 二、窗口界面架构设计 系统界面由多个功能模块构成,各模块职责明确,具体如下: 1. 起始界面模块(Widget) 作为应用程序的入口界面,提供初始导航功能。 2. 身份验证模块(Login) 负责处理用户登录与账户注册流程,实现身份认证机制。 3. 游戏主大厅模块(Lobby) 作为用户登录后的核心交互区域,集成各项功能入口。 4. 资源管理模块(BagWidget) 展示用户持有的全部小精灵资产,提供可视化资源管理界面。 5. 精灵详情模块(SpiritInfo) 呈现选定小精灵的完整属性数据与状态信息。 6. 用户名录模块(UserList) 系统内所有注册用户的基本信息列表展示界面。 7. 个人资料模块(UserInfo) 显示当前用户的详细账户资料与历史数据统计。 8. 服务器精灵选择模块(Choose) 对战准备阶段,从服务器可用精灵池中选取参战单位的专用界面。 9. 玩家精灵选择模块(Choose2) 对战准备阶段,从玩家自有精灵库中筛选参战单位的操作界面。 10. 对战演算模块(FightWidget) 实时模拟精灵对战过程,动态呈现战斗动画与状态变化。 11. 对战结算模块(ResultWidget) 对战结束后,系统生成并展示战斗结果报告与数据统计。 各模块通过统一的事件驱动机制实现数据通信与状态同步,确保系统功能的连贯性与数据一致性。界面布局遵循模块化设计原则,采用响应式视觉方案适配不同显示环境。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值