LeetCode 403. Frog Jump DP BFS状态重 青蛙跳

本文探讨了一只青蛙如何通过跳跃到达河对岸的问题,使用动态规划和广度优先搜索两种算法解决。给定一系列石头的位置,青蛙必须从第一块石头开始跳跃,每次跳跃的距离只能是上一次跳跃距离的基础上加减1或不变。文章详细解释了两种算法的实现过程,并提供了Python代码示例。

A frog is crossing a river. The river is divided into x units and at each unit there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.

Given a list of stones' positions (in units) in sorted ascending order, determine if the frog is able to cross the river by landing on the last stone. Initially, the frog is on the first stone and assume the first jump must be 1 unit.

If the frog's last jump was k units, then its next jump must be either k - 1, k, or k + 1 units. Note that the frog can only jump in the forward direction.

Note:

  • The number of stones is ≥ 2 and is < 1,100.
  • Each stone's position will be a non-negative integer < 231.
  • The first stone's position is always 0.

 

Example 1:

[0,1,3,5,6,8,12,17]

There are a total of 8 stones.
The first stone at the 0th unit, second stone at the 1st unit,
third stone at the 3rd unit, and so on...
The last stone at the 17th unit.

Return true. The frog can jump to the last stone by jumping 
1 unit to the 2nd stone, then 2 units to the 3rd stone, then 
2 units to the 4th stone, then 3 units to the 6th stone, 
4 units to the 7th stone, and 5 units to the 8th stone.

 

Example 2:

[0,1,2,3,4,8,9,11]

Return false. There is no way to jump to the last stone as 
the gap between the 5th and 6th stone is too large.

---------------------------------------------------------------------------------------------------

BFS is straightforward, take care the dup states:

class Solution:
    def canCross(self, stones) -> bool:
        sset = set(stones)
        if (1 not in sset):
            return False
        elif (stones[-1] == 1):
            return True


        layers, vis = [[(1,1)], []], {(1,1)}
        c, n, target = 0, 1, stones[-1]
        while (layers[c]):
            for cur,ck in layers[c]:
                for nxt,nk in [(cur+ck,ck), (cur+ck-1,ck-1), (cur+ck+1,ck+1)]:
                    if (nk >= 0 and cur < nxt and nxt <= target and (nxt,nk) not in vis and nxt in sset):
                        if (nxt == target):
                            return True
                        layers[n].append((nxt,nk))
                        vis.add((nxt,nk))
            layers[c].clear()
            c, n = n, c
        return False

DP:

use f[i][j] to stands whether stones[i] could be visited by step j. So use defaultdict to diminish the size of dict:

from collections import defaultdict

class Solution:
    def canCross(self, stones) -> bool:
        dic = defaultdict(set)
        dic[0] = {0}
        for stone in stones:
            for k in list(dic[stone]):
                for nk in [k-1,k,k+1]:
                    if (nk>=0):
                        npos = stone+nk
                        dic[npos].add(nk)
        return dic[stones[-1]]
s = Solution()
print(s.canCross([0,1,3,5,6,8,12,17]))
print(s.canCross([0,1,2,3,4,8,9,11]))

 

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值