LeetCode 115. 不同的子序列

这篇博客介绍了LeetCode 115题目的详细解题过程,包括题目描述、解题思路和程序代码。题目要求计算字符串S中子序列T的出现次数,保证答案在32位整数范围内。博客提供了递归解法作为思路的起点,并指出如何转化为记忆化搜索和最终的动态规划解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接 LeetCode 115. 不同的子序列

题目描述

给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数。

一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)

题目数据保证答案符合 32 位带符号整数范围。

示例 1:
输入:S = “rabbbit”, T = “rabbit”
输出:3
解释:

如下图所示, 有 3 种可以从 S 中得到 “rabbit” 的方案。
(上箭头符号 ^ 表示选取的字母)

rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^
示例 2:

输入:S = “babgbag”, T = “bag”
输出:5
解释:

如下图所示, 有 5 种可以从 S 中得到 “bag” 的方案。
(上箭头符号 ^ 表示选取的字母)

babgbag
^^ ^
babgbag
^^ ^
babgbag
^ ^^
babgbag
^ ^^
babgbag
^^^

解题思路

当初搞信息竞赛的时候对DP掌握的就很差,现在得重新来过了,所以我们就从一开始的递归解法开始吧。

很多DP题目都可用递归来做,当然不能过掉全部的数据,但是我们可以用递归来找思路,然后再转化成记忆化搜索,最后优化成DP,是一个很好的思路。

首先得搞清楚一个问题,不论是递归还是DP,都要搞清楚这个问题所涉及的所有状态,哪些状态是对提供答案有用的,哪些是没用的,如果状态不清楚的话就很难进行下一步操作。

在这道题中,我们先来找哪些状态可以对提供答案有用。
①如果s[i]==t[j]
我们有两种选择
第一种即当前s[i]和t[j]相匹配,两个指针都往下一个移动。
第二种就是不用当前的s[i]和t[j]匹配,而是用下一个s[i+1]和t[j]去匹配,因为有可能出现 i 位置上和 i+1 位置上都是相同的,可以有选择的用哪一个来匹配。

②如果s[i]!=t[j]
那么 i 指针往下一个移动, j 指针不移动。

根据这几个状态我们就可以写出递归的程序,进而也就可以写出DP的程序代码。

程序代码

递归版

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int dfs(string s,string t,int i,int j) {
   
   
	if(j==t
### 解题思路 LeetCode 第 674 题的目标是找到给定数组中的最长连续递增子序列的长度。此问题可以通过一次线性扫描来解决,时间复杂度为 O(n),空间复杂度可以优化到 O(1)[^1]。 #### 关键点分析 - **连续性**:题目强调的是“连续”,因此只需要比较相邻两个元素即可判断是否构成递增关系。 - **动态规划 vs 贪心算法**:虽然可以用动态规划的思想解决问题,但由于只需记录当前的最大值而无需回溯历史状态,贪心策略更为高效[^3]。 --- ### Python 实现 以下是基于贪心算法的 Python 实现: ```python class Solution: def findLengthOfLCIS(self, nums): if not nums: # 如果输入为空,则返回0 return 0 max_len = 1 # 至少有一个元素时,最小长度为1 current_len = 1 # 当前连续递增序列的长度初始化为1 for i in range(1, len(nums)): # 从第二个元素开始遍历 if nums[i] > nums[i - 1]: # 判断当前元素是否大于前一个元素 current_len += 1 # 是则增加当前长度 max_len = max(max_len, current_len) # 更新全局最大长度 else: current_len = 1 # 否则重置当前长度 return max_len # 返回最终结果 ``` 上述代码通过维护 `current_len` 和 `max_len` 来跟踪当前连续递增序列的长度以及整体的最大长度。 --- ### Java 实现 下面是等效的 Java 版本实现: ```java public class Solution { public int findLengthOfLCIS(int[] nums) { if (nums.length == 0) { // 处理边界情况 return 0; } int maxLength = 1; // 初始化最大长度 int currentLength = 1; // 初始化当前长度 for (int i = 1; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { // 若满足递增条件 currentLength++; // 增加当前长度 maxLength = Math.max(maxLength, currentLength); // 更新最大长度 } else { currentLength = 1; // 不满足递增条件时重新计数 } } return maxLength; // 返回结果 } } ``` 该版本逻辑与 Python 类似,但在语法上更贴近 Java 的特性[^4]。 --- ### C++ 实现 对于 C++ 用户,下面是一个高效的解决方案: ```cpp #include <vector> #include <algorithm> // 使用 std::max 函数 using namespace std; class Solution { public: int findLengthOfLCIS(vector<int>& nums) { if (nums.empty()) { // 边界处理 return 0; } int result = 1; // 结果变量 int count = 1; // 当前连续递增序列长度 for (size_t i = 1; i < nums.size(); ++i) { if (nums[i] > nums[i - 1]) { // 检查递增条件 count++; result = max(result, count); } else { count = 1; // 重置计数器 } } return result; // 返回最终结果 } }; ``` 这段代码同样遵循了单次遍历的原则,并利用标准库函数简化了一些操作。 --- ### 小结 三种语言的核心思想一致,均采用了一种简单的线性扫描方式完成任务。这种方法不仅易于理解,而且性能优越,在实际应用中非常实用[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值