用C++实现的ICP(Iterative Closest Point,迭代最近点)算法,借助了PCL库实现点云基本变换、KD-tree以及可视化部分,核心迭代部分没有调用PCL的api。代码在KD-tree搜索部分采用了openmp加速优化,在适当的数据集下运行速度能超过PCL自带的ICP算法配准api。
ICP算法的原理和推导,网上有很多,在此不赘述。下面链接是我觉得讲的比较详细的,可以参考:
三维点云配准 – ICP 算法原理及推导
ICP算法公式推导和PCL源码解析
另外,本文的代码实现过程还参考了:
迭代最近点 ICP 详细推导(C++实现)(借助Eigen库)
C++实现ICP点云匹配(借助OpenCV库和Eigen库)
废话不多说,下面贴代码。
myicp.h
/********************************************************************************
** @Copyright(c) $year$ $registered organization$ All Rights Reserved.
** @auth: taify
** @date: 2021/01/12
** @desc: myicp头文件
** @Ver : V1.0.0
*********************************************************************************/
#ifndef MYICP_H_
#define MYICP_H_
#include <iostream>
#include <fstream>
#include <ctime>
#include <cmath>
#include <string>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/common/transforms.h>
#include <pcl/search/kdtree.h>
#include <pcl/correspondence.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <omp.h>
/**
* @brief The MyICP class
*/
class MyICP
{
public:
MyICP();
~MyICP();
/**
* @brief setSourceCloud 设置输入点云
* @param cloud 输入点云
*/
void setSourceCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud);
/**
* @brief setTargetCloud 设置目标点云
* @param cloud 目标点云
*/
void setTargetCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud);
/**
* @brief setLeafSize 设置体素滤波网格尺寸
* @param size 体素滤波网格尺寸
*/
void setLeafSize(float size);
/**
* @brief setMinError 设置最小误差
* @param error 最小误差
*/
void setMinError(float error);
/**
* @brief setMaxIters 设置最大迭代次数
* @param iters 最大迭代次数
*/
void setMaxIters(int iters);
/**
* @brief setEpsilon 设置配准误差
* @param eps 配准误差
*/
void setEpsilon(float eps);
/**
* @brief downsample 下采样
*/
void downsample();
/**
* @brief registration 配准
*/
void registration();
/**
* @brief saveICPCloud 保存配准得到的点云
* @param filename 点云文件名
*/
void saveICPCloud(const std::string filename);
/**
* @brief getTransformationMatrix 得到变换矩阵
*/
void getTransformationMatrix();
/**
* @brief getScore 得到配准得分
*/
void getScore();
/**
* @brief visualize 配准结果可视化(输入点云为绿色,目标点云为红色,配准点云为蓝色)
*/
void visualize();
private:
/**
* @brief source_cloud 输入点云
*/
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud;
/**
* @brief target_cloud 目标点云
*/
pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud;
/**
* @brief source_cloud_downsampled 输入点云下采样得到的点云
*/
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud_downsampled;
/**
* @brief target_cloud_downsampled 目标点云下采样得到的点云
*/
pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud_downsampled;
/**
* @brief icp_cloud 配准得到的点云
*/
pcl::PointCloud<pcl::PointXYZ>::Ptr icp_cloud;
/**
* @brief leaf_size 体素网格尺寸
*/
float leaf_size;
/**
* @brief min_error 最小误差
*/
float min_error;
/**
* @brief max_iters 最大迭代次数
*/
int max_iters;
/**
* @brief epsilon 配准误差
*/
float epsilon;
/**
* @brief transformation_matrix 变换矩阵
*/
Eigen::Matrix4f transformation_matrix = Eigen::Matrix4f::Identity();
};
#endif // MYICP_H
myicp_helpers.h
/********************************************************************************
** @Copyright(c) $year$ $registered organization$ All Rights Reserved.
** @auth: taify
** @date: 2021/01/12
** @desc: myicp_helpers头文件
** @Ver : V1.0.0
*********************************************************************************/
#ifndef MYICP_HELPERS_H_
#define MYICP_HELPERS_H_
#include <pcl/point_types.h>
#include <pcl/common/transforms.h>
#include <pcl/search/kdtree.h>
/**
* @brief calNearestPointPairs 计算最邻近点对
* @param H 变换矩阵
* @param source_cloud 源点云
* @param target_cloud 目标点云
* @param target_cloud_mid 中间点云
* @param kdtree kd树
* @param error 误差
*/
void calNearestPointPairs(Eigen::Matrix4f H, pcl::PointCloud<pcl::PointXYZ>::Ptr& source_cloud, const pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud,
pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud_mid, pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree, double &error);
#endif // MYICP_HELPERS_H_
myicp.cpp
/********************************************************************************
** @Copyright(c) $year$ $registered organization$ All Rights Reserved.
** @auth: taify
** @date: 2021/01/12
** @desc: myicp源文件
** @Ver : V1.0.0
*********************************************************************************/
#include "myicp.h"
#include "myicp_helpers.h"
MyICP::MyICP()
{
}
MyICP::~MyICP()
{
}
void MyICP::setSourceCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud)
{
source_cloud = cloud;
}
void MyICP::setTargetCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud)
{
target_cloud = cloud;
}
void MyICP::setLeafSize(float size)
{
leaf_size = size;
}
void MyICP::setMinError(float error)
{
min_error = error;
}
void MyICP::setMaxIters(int iters)
{
max_iters = iters;
}
void MyICP::setEpsilon(float eps)
{
epsilon = eps;
}
void MyICP::downsample()
{
pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
voxel_grid.setLeafSize(leaf_size, leaf_size, leaf_size);
voxel_grid.setInputCloud(source_cloud);
source_cloud_downsampled.reset(new pcl::PointCloud<pcl::PointXYZ>);
voxel_grid.filter(*source_cloud_downsampled);
voxel_grid.setInputCloud(target_cloud);
target_cloud_downsampled.reset(new pcl::PointCloud<pcl::PointXYZ>);
voxel_grid.filter(*target_cloud_downsampled);
std::cout << "down size *cloud_src_o from " << source_cloud->size() << " to " << source_cloud_downsampled->size() << endl;
std::cout << "down size *cloud_tgt_o from " << target_cloud->size() << " to " << target_cloud_downsampled->size() << endl;
}
void MyICP::registration()
{
std::cout << "icp registration start..." << std::endl;
Eigen::Matrix3f R_12 = Eigen::Matrix3f::Identity();
Eigen::Vector3f T_12 = Eigen::Vector3f::Zero();
Eigen::Matrix4f H_12 = Eigen::Matrix4f::Identity();
pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud_mid(new pcl::PointCloud<pcl::PointXYZ>());
//建立kd树
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<pcl::PointXYZ>);
kdtree->setInputCloud(target_cloud_downsampled);
double error = INT_MAX, score = INT_MAX;
Eigen::Matrix4f H_final = H_12;
int iters = 0;
//开始迭代,直到满足条件
while (error > min_error && iters < max_iters)
{
iters++;
double last_error = error;
//计算最邻近点对
calNearestPointPairs(H_12, source_cloud_downsampled, target_cloud_downsampled, target_cloud_mid, kdtree, error);
if (last_error - error < epsilon)
break;
//计算点云中心坐标
Eigen::Vector4f source_centroid, target_centroid_mid;
pcl::compute3DCentroid(*source_cloud_downsampled, source_centroid);
pcl::compute3DCentroid(*target_cloud_mid, target_centroid_mid);
//去中心化
Eigen::MatrixXf souce_cloud_demean, target_cloud_demean;
pcl::demeanPointCloud(*source_cloud_downsampled, source_centroid, souce_cloud_demean);
pcl::demeanPointCloud(*target_cloud_mid, target_centroid_mid, target_cloud_demean);
//计算W=q1*q2^T
Eigen::Matrix3f W = (souce_cloud_demean*target_cloud_demean.transpose()).topLeftCorner(3, 3);
//SVD分解得到新的旋转矩阵和平移矩阵
Eigen::JacobiSVD<Eigen::Matrix3f> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3f U = svd.matrixU();
Eigen::Matrix3f V = svd.matrixV();
if (U.determinant()*V.determinant() < 0)
{
for (int x = 0; x < 3; ++x)
V(x, 2) *= -1;
}
R_12 = V* U.transpose();
T_12 = target_centroid_mid.head(3) - R_12*source_centroid.head(3);
H_12 << R_12, T_12, 0, 0, 0, 1;
H_final = H_12*H_final; //更新变换矩阵
std::cout << "iters:" << iters << " "<< "error:" << error << std::endl;
}
transformation_matrix << H_final;
}
void MyICP::saveICPCloud(const std::string filename)
{
icp_cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*source_cloud, *icp_cloud, transformation_matrix); //点云变换
pcl::io::savePCDFileBinary(filename, *icp_cloud);
}
void MyICP::getTransformationMatrix()
{
std::cout << "transformation_matrix:" << std::endl << transformation_matrix << std::endl;
}
void MyICP::getScore()
{
double fitness_score = 0.0;
pcl::KdTreeFLANN <pcl::PointXYZ> kdtree;
kdtree.setInputCloud(target_cloud);
#pragma omp parallel for reduction(+:fitness_score) //采用openmmp加速
for (int i = 0; i < icp_cloud->points.size(); ++i)
{
std::vector<int> nn_indices(1);
std::vector<float> nn_dists(1);
kdtree.nearestKSearch(icp_cloud->points[i], 1, nn_indices, nn_dists);
fitness_score += nn_dists[0];
}
std::cout << "score:" << std::endl << fitness_score / icp_cloud->points.size() << std::endl;
}
void MyICP::visualize()
{
pcl::visualization::PCLVisualizer viewer("registration Viewer");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> src_h(source_cloud, 0, 255, 0); //原始点云绿色
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> tgt_h(target_cloud, 255, 0, 0); //目标点云红色
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> final_h(icp_cloud, 0, 0, 255); //匹配好的点云蓝色
viewer.setBackgroundColor(255, 255, 255);
viewer.addPointCloud(source_cloud, src_h, "source cloud");
viewer.addPointCloud(target_cloud, tgt_h, "target cloud");
viewer.addPointCloud(icp_cloud, final_h, "result cloud");
while (!viewer.wasStopped())
{
viewer.spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
}
myicp_helpers.cpp
/********************************************************************************
** @Copyright(c) $year$ $registered organization$ All Rights Reserved.
** @auth: taify
** @date: 2021/01/12
** @desc: myicp_helpers源文件
** @Ver : V1.0.0
*********************************************************************************/
#include "myicp_helpers.h"
void calNearestPointPairs(Eigen::Matrix4f H, pcl::PointCloud<pcl::PointXYZ>::Ptr& source_cloud, const pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud,
pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud_mid, pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree, double &error)
{
double err = 0.0;
pcl::transformPointCloud(*source_cloud, *source_cloud, H);
std::vector<int>indexs(source_cloud->size());
#pragma omp parallel for reduction(+:err) //采用openmmp加速
for (int i = 0; i < source_cloud->size(); ++i)
{
std::vector<int>index(1);
std::vector<float>distance(1);
kdtree->nearestKSearch(source_cloud->points[i], 1, index, distance);
err = err + sqrt(distance[0]);
indexs[i] = index[0];
}
pcl::copyPointCloud(*target_cloud, indexs, *target_cloud_mid);
error = err / source_cloud->size();
}
贴一张效果图:
完整工程文件见我的GitHub.
由于代码写的比较仓促,不恰当的地方还请指教。
python版本的ICP算法实现如下:
import numpy as np
import open3d as o3d
from scipy.spatial import KDTree
def translate(points, t):
return points + t
def rotate(points, R):
return np.dot(points, R.T)
def nearest_neighbor(src, dst):
tree = KDTree(dst)
distances, indices = tree.query(src, k=1)
return indices
def compute_transform(src, dst):
src_mean = np.mean(src, axis=0)
dst_mean = np.mean(dst, axis=0)
src_centered = src - src_mean
dst_centered = dst - dst_mean
H = np.dot(src_centered.T, dst_centered)
U, _, Vt = np.linalg.svd(H)
R = np.dot(Vt.T, U.T)
t = dst_mean - np.dot(R, src_mean)
return R, t
def icp(src, dst, max_iterations=100, tolerance=1e-6):
src_points = np.copy(src)
dst_points = np.copy(dst)
R_total = np.eye(src.shape[1])
t_total = np.zeros(src.shape[1])
prev_error = 0
for i in range(max_iterations):
indices = nearest_neighbor(src_points, dst_points)
corresponding_points = dst_points[indices]
R, t = compute_transform(src_points, corresponding_points)
src_points = rotate(src_points, R)
src_points = translate(src_points, t)
R_total = np.dot(R, R_total)
t_total = np.dot(R, t_total) + t
mean_error = np.mean(np.linalg.norm(corresponding_points - src_points, axis=1))
print(f'Iteration {i+1}: Mean Error = {mean_error}')
if abs(prev_error - mean_error) < tolerance:
break
prev_error = mean_error
return R_total, t_total
if __name__ == "__main__":
source = o3d.io.read_point_cloud("bunny1.pcd")
target = o3d.io.read_point_cloud("bunny2.pcd")
source_points = np.array(source.points)
target_points = np.array(target.points)
R_est, t_est = icp(source_points, target_points)
icp_points = rotate(source_points, R_est)
icp_points = translate(icp_points, t_est)
print("\nEstimated Rotation Matrix:", R_est)
print("\nEstimated Translation Vector:", t_est)
result = o3d.geometry.PointCloud()
result.points = o3d.utility.Vector3dVector(icp_points)
o3d.visualization.draw_geometries([source, result, target])
o3d.io.write_point_cloud("result.pcd", result)
后续文章更新:
ICP算法的三种实现方法(SVD分解、四元数、BA)
ICP算法加速优化-多线程和GPU
点到面的ICP算法
KinectFusion中的ICP算法
只用Eigen库实现的ICP算法