win10 tensorflow MTCNN Demo

本文介绍了一个基于TensorFlow的人脸检测系统MTCNN的实现细节,并提供了完整的Python代码示例。该系统能够实现实时捕获摄像头画面并进行人脸检测及框选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

doc mark here

win10安装的tensorflow是python3.5版本的,因此还要安装对应版本的opencv,python opencv下载地址:

http://www.lfd.uci.edu/~gohlke/pythonlibs/

选择32位还是64位的文件,比如:opencv_python-3.1.0-cp35-cp35m-win_amd64.whl

在python 安装地址下的 \Scripts有pip.exe  运行 

pip.exe install opencv_python-3.1.0-cp35-cp35m-win32.whl


MTCNN 入口代码

#coding = gbk
import tensorflow as tf
import numpy as np
import cv2
import detect_face
import time

#face detection parameters
minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
factor = 0.709 # scale factor

def to_rgb(img):
    w, h = img.shape
    ret = np.empty((w, h, 3), dtype=np.uint8)
    ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
    return ret

# restore mtcnn model
print('Creating networks and loading parameters')
gpu_memory_fraction = 1.0
with tf.Graph().as_default():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
    with sess.as_default():
        pnet, rnet, onet = detect_face.create_mtcnn(sess, './model_check_point/')

video_capture = cv2.VideoCapture(0)
while True:
    # Capture frame-by-frame
    ret, frame = video_capture.read()

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    if gray.ndim == 2:
        img = to_rgb(gray)
    start = time.time()
    bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
    end = time.time()
    print("current frame processing time : %.2fms"%((end-start)*1000))

    nrof_faces = bounding_boxes.shape[0]  # number of faces
    # print('找到人脸数目为:{}'.format(nrof_faces))

    for face_position in bounding_boxes:
        face_position = face_position.astype(int)

        cv2.rectangle(frame,
                      (face_position[0], face_position[1]),
                      (face_position[2], face_position[3]),
                      (0, 255, 0), 2)
    # print(faces)
    cv2.imshow('MTCNN Demo', frame)
    if cv2.waitKey(30) & 0xFF == ord('q'):
        break

video_capture.release()
cv2.destroyAllWindows()
 
 


核心实现代码,代码中做了一些修改,主要是因为python版本的缘故,这里的代码可以在python3.5的环境先正常的run起来。
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
# MIT License
# 
# Copyright (c) 2016 David Sandberg
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
#from math import floor
import cv2
import os

def layer(op):
    '''Decorator for composable network layers.'''

    def layer_decorated(self, *args, **kwargs):
        # Automatically set a name if not provided.
        name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
        # Figure out the layer inputs.
        if len(self.terminals) == 0:
            raise RuntimeError('No input variables found for layer %s.' % name)
        elif len(self.terminals) == 1:
            layer_input = self.terminals[0]
        else:
            layer_input = list(self.terminals)
        # Perform the operation and get the output.
        layer_output = op(self, layer_input, *args, **kwargs)
        # Add to layer LUT.
        self.layers[name] = layer_output
        # This output is now the input for the next layer.
        self.feed(layer_output)
        # Return self for chained calls.
        return self

    return layer_decorated

class Network(object):

    def __init__(self, inputs, trainable=True):
        # The input nodes for this network
        self.inputs = inputs
        # The current list of terminal nodes
        self.terminals = []
        # Mapping from layer names to layers
        self.layers = dict(inputs)
        # If true, the resulting variables are set as trainable
        self.trainable = trainable

        self.setup()

    def setup(self):
        '''Construct the network. '''
        raise NotImplementedError('Must be implemented by the subclass.')

    def load(self, data_path, session, ignore_missing=False):
        '''Load network weights.
        data_path: The path to the numpy-serialized network weights
        session: The current TensorFlow session
        ignore_missing: If true, serialized weights for missing layers are ignored.
        '''
        #data_dict = np.load(data_path).item() #pylint: disable=no-member #change 2017-12-13
        data_dict = np.load(data_path, encoding="latin1").item() #pylint: disable=no-member
        for op_name in data_dict:
            with tf.variable_scope(op_name, reuse=True):
                #for param_name, data in data_dict[op_name].iteritems(): #python 2 coding style
                for param_name, data in data_dict[op_name].items():
                    try:
                        var = tf.get_variable(param_name)
                        session.run(var.assign(data))
                    except ValueError:
                        if not ignore_missing:
                            raise

    def feed(self, *args):
        '''Set the input(s) for the next operation by replacing the terminal nodes.
        The arguments can be either layer names or the actual layers.
        '''
        assert len(args) != 0
        self.terminals = []
        for fed_layer in args:
            #if isinstance(fed_layer, basestring):
            if isinstance(fed_layer, str):
                try:
                    fed_layer = self.layers[fed_layer]
                except KeyError:
                    raise KeyError('Unknown layer name fed: %s' % fed_layer)
            self.terminals.append(fed_layer)
        return self

    def get_output(self):
        '''Returns the current network output.'''
        return self.terminals[-1]

    def get_unique_name(self, prefix):
        '''Returns an index-suffixed unique name for the given prefix.
        This is used for auto-generating layer names based on the type-prefix.
        '''
        ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
        return '%s_%d' % (prefix, ident)

    def make_var(self, name, shape):
        '''Creates a new TensorFlow variable.'''
        return tf.get_variable(name, shape, trainable=self.trainable)

    def validate_padding(self, padding):
        '''Verifies that the padding is one of the supported ones.'''
        assert padding in ('SAME', 'VALID')

    @layer
    def conv(self,
             inp,
             k_h,
             k_w,
             c_o,
             s_h,
             s_w,
             name,
             relu=True,
             padding='SAME',
             group=1,
             biased=True):
        # Verify that the padding is acceptable
        self.validate_padding(padding)
        # Get the number of channels in the input
        c_i = inp.get_shape()[-1]
        # Verify that the grouping parameter is valid
        assert c_i % group == 0
        assert c_o % group == 0
        # Convolution for a given input and kernel
        convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
        with tf.variable_scope(name) as scope:
            kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o])
            # This is the common-case. Convolve the input without any further complications.
            output = convolve(inp, kernel)
            # Add the biases
            if biased:
                biases = self.make_var('biases', [c_o])
                output = tf.nn.bias_add(output, biases)
            if relu:
                # ReLU non-linearity
                output = tf.nn.relu(output, name=scope.name)
            return output

    @layer
    def prelu(self, inp, name):
        with tf.variable_scope(name):
            i = inp.get_shape().as_list()
            alpha = self.make_var('alpha', shape=(i[-1]))
            #output = tf.nn.relu(inp) + tf.mul(alpha, -tf.nn.relu(-inp)) //yafei change 2017-12-13
            output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp))
        return output

    @layer
    def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'):
        self.validate_padding(padding)
        return tf.nn.max_pool(inp,
                              ksize=[1, k_h, k_w, 1],
                              strides=[1, s_h, s_w, 1],
                              padding=padding,
                              name=name)

    @layer
    def fc(self, inp, num_out, name, relu=True):
        with tf.variable_scope(name):
            input_shape = inp.get_shape()
            if input_shape.ndims == 4:
                # The input is spatial. Vectorize it first.
                dim = 1
                for d in input_shape[1:].as_list():
                    dim *= d
                feed_in = tf.reshape(inp, [-1, dim])
            else:
                feed_in, dim = (inp, input_shape[-1].value)
            weights = self.make_var('weights', shape=[dim, num_out])
            biases = self.make_var('biases', [num_out])
            op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
            fc = op(feed_in, weights, biases, name=name)
            return fc


    """
    Multi dimensional softmax,
    refer to https://github.com/tensorflow/tensorflow/issues/210
    compute softmax along the dimension of target
    the native softmax only supports batch_size x dimension
    """
    @layer
    def softmax(self, target, axis, name=None):
        max_axis = tf.reduce_max(target, axis, keep_dims=True)
        target_exp = tf.exp(target-max_axis)
        normalize = tf.reduce_sum(target_exp, axis, keep_dims=True)
        softmax = tf.div(target_exp, normalize, name)
        return softmax
    
class PNet(Network):
    def setup(self):
        (self.feed('data') #pylint: disable=no-value-for-parameter, no-member
             .conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1')
             .prelu(name='PReLU1')
             .max_pool(2, 2, 2, 2, name='pool1')
             .conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2')
             .prelu(name='PReLU2')
             .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3')
             .prelu(name='PReLU3')
             .conv(1, 1, 2, 1, 1, relu=False, name='conv4-1')
             .softmax(3,name='prob1'))

        (self.feed('PReLU3') #pylint: disable=no-value-for-parameter
             .conv(1, 1, 4, 1, 1, relu=False, name='conv4-2'))
        
class RNet(Network):
    def setup(self):
        (self.feed('data') #pylint: disable=no-value-for-parameter, no-member
             .conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1')
             .prelu(name='prelu1')
             .max_pool(3, 3, 2, 2, name='pool1')
             .conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2')
             .prelu(name='prelu2')
             .max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
             .conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3')
             .prelu(name='prelu3')
             .fc(128, relu=False, name='conv4')
             .prelu(name='prelu4')
             .fc(2, relu=False, name='conv5-1')
             .softmax(1,name='prob1'))

        (self.feed('prelu4') #pylint: disable=no-value-for-parameter
             .fc(4, relu=False, name='conv5-2'))

class ONet(Network):
    def setup(self):
        (self.feed('data') #pylint: disable=no-value-for-parameter, no-member
             .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1')
             .prelu(name='prelu1')
             .max_pool(3, 3, 2, 2, name='pool1')
             .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2')
             .prelu(name='prelu2')
             .max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
             .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3')
             .prelu(name='prelu3')
             .max_pool(2, 2, 2, 2, name='pool3')
             .conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4')
             .prelu(name='prelu4')
             .fc(256, relu=False, name='conv5')
             .prelu(name='prelu5')
             .fc(2, relu=False, name='conv6-1')
             .softmax(1, name='prob1'))

        (self.feed('prelu5') #pylint: disable=no-value-for-parameter
             .fc(4, relu=False, name='conv6-2'))

        (self.feed('prelu5') #pylint: disable=no-value-for-parameter
             .fc(10, relu=False, name='conv6-3'))

def create_mtcnn(sess, model_path):
    with tf.variable_scope('pnet'):
        data = tf.placeholder(tf.float32, (None,None,None,3), 'input')
        pnet = PNet({'data':data})
        pnet.load(os.path.join(model_path, 'det1.npy'), sess)
    with tf.variable_scope('rnet'):
        data = tf.placeholder(tf.float32, (None,24,24,3), 'input')
        rnet = RNet({'data':data})
        rnet.load(os.path.join(model_path, 'det2.npy'), sess)
    with tf.variable_scope('onet'):
        data = tf.placeholder(tf.float32, (None,48,48,3), 'input')
        onet = ONet({'data':data})
        onet.load(os.path.join(model_path, 'det3.npy'), sess)
        
    pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img})
    rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img})
    onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img})
    return pnet_fun, rnet_fun, onet_fun

def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
    # im: input image
    # minsize: minimum of faces' size
    # pnet, rnet, onet: caffemodel
    # threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold
    # fastresize: resize img from last scale (using in high-resolution images) if fastresize==true
    factor_count=0
    total_boxes=np.empty((0,9))
    points=[]
    h=img.shape[0]
    w=img.shape[1]
    minl=np.amin([h, w])
    m=12.0/minsize
    minl=minl*m
    # creat scale pyramid
    scales=[]
    while minl>=12:
        scales += [m*np.power(factor, factor_count)]
        minl = minl*factor
        factor_count += 1

    # first stage
    for j in range(len(scales)):
        scale=scales[j]
        hs=int(np.ceil(h*scale))
        ws=int(np.ceil(w*scale))
        im_data = imresample(img, (hs, ws))
        im_data = (im_data-127.5)*0.0078125
        img_x = np.expand_dims(im_data, 0)
        img_y = np.transpose(img_x, (0,2,1,3))
        out = pnet(img_y)
        out0 = np.transpose(out[0], (0,2,1,3))
        out1 = np.transpose(out[1], (0,2,1,3))
        
        boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
        
        # inter-scale nms
        pick = nms(boxes.copy(), 0.5, 'Union')
        if boxes.size>0 and pick.size>0:
            boxes = boxes[pick,:]
            total_boxes = np.append(total_boxes, boxes, axis=0)

    numbox = total_boxes.shape[0]
    if numbox>0:
        pick = nms(total_boxes.copy(), 0.7, 'Union')
        total_boxes = total_boxes[pick,:]
        regw = total_boxes[:,2]-total_boxes[:,0]
        regh = total_boxes[:,3]-total_boxes[:,1]
        qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
        qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
        qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
        qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
        total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
        total_boxes = rerec(total_boxes.copy())
        total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
        dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)

    numbox = total_boxes.shape[0]
    if numbox>0:
        # second stage
        tempimg = np.zeros((24,24,3,numbox))
        for k in range(0,numbox):
            tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
            tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
            if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
                tempimg[:,:,:,k] = imresample(tmp, (24, 24))
            else:
                return np.empty()
        tempimg = (tempimg-127.5)*0.0078125
        tempimg1 = np.transpose(tempimg, (3,1,0,2))
        out = rnet(tempimg1)
        out0 = np.transpose(out[0])
        out1 = np.transpose(out[1])
        score = out1[1,:]
        ipass = np.where(score>threshold[1])
        total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
        mv = out0[:,ipass[0]]
        if total_boxes.shape[0]>0:
            pick = nms(total_boxes, 0.7, 'Union')
            total_boxes = total_boxes[pick,:]
            total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
            total_boxes = rerec(total_boxes.copy())

    numbox = total_boxes.shape[0]
    if numbox>0:
        # third stage
        total_boxes = np.fix(total_boxes).astype(np.int32)
        dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
        tempimg = np.zeros((48,48,3,numbox))
        for k in range(0,numbox):
            tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
            tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
            if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
                tempimg[:,:,:,k] = imresample(tmp, (48, 48))
            else:
                return np.empty()
        tempimg = (tempimg-127.5)*0.0078125
        tempimg1 = np.transpose(tempimg, (3,1,0,2))
        out = onet(tempimg1)
        out0 = np.transpose(out[0])
        out1 = np.transpose(out[1])
        out2 = np.transpose(out[2])
        score = out2[1,:]
        points = out1
        ipass = np.where(score>threshold[2])
        points = points[:,ipass[0]]
        total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
        mv = out0[:,ipass[0]]

        w = total_boxes[:,2]-total_boxes[:,0]+1
        h = total_boxes[:,3]-total_boxes[:,1]+1
        points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
        points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
        if total_boxes.shape[0]>0:
            total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
            pick = nms(total_boxes.copy(), 0.7, 'Min')
            total_boxes = total_boxes[pick,:]
            points = points[:,pick]
                
    return total_boxes, points
            
 
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox,reg):
    # calibrate bounding boxes
    if reg.shape[1]==1:
        reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))

    w = boundingbox[:,2]-boundingbox[:,0]+1
    h = boundingbox[:,3]-boundingbox[:,1]+1
    b1 = boundingbox[:,0]+reg[:,0]*w
    b2 = boundingbox[:,1]+reg[:,1]*h
    b3 = boundingbox[:,2]+reg[:,2]*w
    b4 = boundingbox[:,3]+reg[:,3]*h
    boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
    return boundingbox
 
def generateBoundingBox(imap, reg, scale, t):
    # use heatmap to generate bounding boxes
    stride=2
    cellsize=12

    imap = np.transpose(imap)
    dx1 = np.transpose(reg[:,:,0])
    dy1 = np.transpose(reg[:,:,1])
    dx2 = np.transpose(reg[:,:,2])
    dy2 = np.transpose(reg[:,:,3])
    y, x = np.where(imap >= t)
    if y.shape[0]==1:
        dx1 = np.flipud(dx1)
        dy1 = np.flipud(dy1)
        dx2 = np.flipud(dx2)
        dy2 = np.flipud(dy2)
    score = imap[(y,x)]
    reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
    if reg.size==0:
        reg = np.empty((0,3))
    bb = np.transpose(np.vstack([y,x]))
    q1 = np.fix((stride*bb+1)/scale)
    q2 = np.fix((stride*bb+cellsize-1+1)/scale)
    boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
    return boundingbox, reg
 
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
    if boxes.size==0:
        return np.empty((0,3))
    x1 = boxes[:,0]
    y1 = boxes[:,1]
    x2 = boxes[:,2]
    y2 = boxes[:,3]
    s = boxes[:,4]
    area = (x2-x1+1) * (y2-y1+1)
    I = np.argsort(s)
    pick = np.zeros_like(s, dtype=np.int16)
    counter = 0
    while I.size>0:
        i = I[-1]
        pick[counter] = i
        counter += 1
        idx = I[0:-1]
        xx1 = np.maximum(x1[i], x1[idx])
        yy1 = np.maximum(y1[i], y1[idx])
        xx2 = np.minimum(x2[i], x2[idx])
        yy2 = np.minimum(y2[i], y2[idx])
        w = np.maximum(0.0, xx2-xx1+1)
        h = np.maximum(0.0, yy2-yy1+1)
        inter = w * h
        if method is 'Min':
            o = inter / np.minimum(area[i], area[idx])
        else:
            o = inter / (area[i] + area[idx] - inter)
        I = I[np.where(o<=threshold)]
    pick = pick[0:counter]
    return pick

# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
    # compute the padding coordinates (pad the bounding boxes to square)
    tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
    tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
    numbox = total_boxes.shape[0]

    dx = np.ones((numbox), dtype=np.int32)
    dy = np.ones((numbox), dtype=np.int32)
    edx = tmpw.copy().astype(np.int32)
    edy = tmph.copy().astype(np.int32)

    x = total_boxes[:,0].copy().astype(np.int32)
    y = total_boxes[:,1].copy().astype(np.int32)
    ex = total_boxes[:,2].copy().astype(np.int32)
    ey = total_boxes[:,3].copy().astype(np.int32)

    tmp = np.where(ex>w)
    #edx[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
    edx[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],0)
    ex[tmp] = w
    
    tmp = np.where(ey>h)
    #edy[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
    edy[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],0)
    ey[tmp] = h

    tmp = np.where(x<1)
    #dx[tmp] = np.expand_dims(2-x[tmp],1)
    dx[tmp] = np.expand_dims(2-x[tmp],0)
    x[tmp] = 1

    tmp = np.where(y<1)
    #dy[tmp] = np.expand_dims(2-y[tmp],1)
    dy[tmp] = np.expand_dims(2-y[tmp],0)
    y[tmp] = 1
    
    return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph

# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
    # convert bboxA to square
    h = bboxA[:,3]-bboxA[:,1]
    w = bboxA[:,2]-bboxA[:,0]
    l = np.maximum(w, h)
    bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
    bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
    bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
    return bboxA

def imresample(img, sz):
    im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #pylint: disable=no-member
    return im_data

    # This method is kept for debugging purpose
#     h=img.shape[0]
#     w=img.shape[1]
#     hs, ws = sz
#     dx = float(w) / ws
#     dy = float(h) / hs
#     im_data = np.zeros((hs,ws,3))
#     for a1 in range(0,hs):
#         for a2 in range(0,ws):
#             for a3 in range(0,3):
#                 im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
#     return im_data




评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值