UVa 11332 Summing Digits (water ver.)

此博客介绍了一个算法挑战,即找到一个正整数序列的最终单数,该序列由数字之和递归组成直到形成一位数。适用于对算法和数学逻辑感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11332 - Summing Digits

Time limit: 3.000 seconds 

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=2307

For a positive integer n, let f(n) denote the sum of the digits of n when represented in base 10. It is easy to see that the sequence of numbers n, f(n), f(f(n)), f(f(f(n))), ... eventually becomes a single digit number that repeats forever. Let this single digit be denoted g(n).

For example, consider n = 1234567892. Then:

f(n) = 1+2+3+4+5+6+7+8+9+2 = 47
f(f(n)) = 4+7 = 11
f(f(f(n))) = 1+1 = 2

Therefore, g(1234567892) = 2.

Each line of input contains a single positive integer n at most 2,000,000,000. For each such integer, you are to output a single line containing g(n). Input is terminated by n = 0 which should not be processed.

Sample input

2
11
47
1234567892
0

Output for sample input

2
2
2
2

完整代码:

/*0.016s*/

#include<cstdio>
#include<cstring>

char n[15];

int main()
{
	int i, sum, len;
	while (gets(n), n[0] != '0')
	{
		sum = 0;
		len = strlen(n);
		for (i = 0; i < len; ++i)
			sum += n[i] & 15;
		sum = sum / 10 + sum % 10;
		sum = sum / 10 + sum % 10;
		printf("%d\n", sum);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值