UVa 846 Steps (数学)

本文介绍了解决UVA 846 Steps问题的一种高效算法,该问题要求找到从整数坐标x到y的最短步数,每一步长度必须为非负数,并且只能比前一步长1、相等或短1,首尾步长固定为1。文章提供了一种基于平方根的方法来快速求解,并附带完整的C语言代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

846 - Steps

Time limit: 3.000 seconds

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=99&page=show_problem&problem=787

One steps through integer points of the straight line. The length of a step must be nonnegative and can be by one bigger than, equal to, or by one smaller than the length of the previous step.

What is the minimum number of steps in order to get from x to y? The length of the first and the last step must be 1.

Input and Output 

Input consists of a line containing n, the number of test cases. For each test case, a line follows with two integers:  0$ \le$x$ \le$y < 231 . For each test case, print a line giving the minimum number of steps to get from  x to  y .

Sample Input 

3
45 48
45 49
45 50

Sample Output 

3
3
4

自己算9~16的步数,答案就看出来了。


完整代码:

/*0.015s*/

#include<cstdio>
#include<cmath>

int main(void)
{
	int t, x, y, diff, n;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d%d", &x, &y);
		diff = y - x;
		if (diff == 0)
			puts("0");
		else
		{
			n = (int)sqrt(diff);
			diff -= n * n;
			if (diff == 0)
				printf("%d\n", (n << 1) - 1);
			else if (diff <= n)
				printf("%d\n", n << 1);
			else
				printf("%d\n", (n << 1) + 1);
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值