点击查看 (人工智能) 系列文章
mnist本身是将数字手写体图像,归一化后信息合成的文件,分训练集和测试集两部分,每部分包含图片和标签两个文件,本文使用C++写的Demo将文件解码,并通过opencv将数据存储为常规的图像文件。源码下载地址:https://github.com/zacSuo/mnist
- t10k-images.idx3-ubyte
- t10k-labels.idx1-ubyte
- train-images.idx3-ubyte
- train-labels.idx1-ubyte
使用说明
环境要求
- visual studio 2012及以上版本
- opencv 2.4及以上版本
配置
启动前先通过项目属性,设置本地opencv的路径。
执行结果
在目录的两个文件夹,分别将测试集(test_images)和训练集(train_images)的图片保存到其中。
程序说明
解码图像
int read_Mnist(std::string filename, std::vector<cv::Mat> &vec)
{
int number_of_images = 0;
std::ifstream file(filename, std::ios::binary);
if (file.is_open()) {
int magic_number = 0;
int n_rows = 0;
int n_cols = 0;
file.read((char*)&magic_number, sizeof(magic_number));
magic_number = ReverseInt(magic_number);
file.read((char*)&number_of_images, sizeof(number_of_images));
number_of_images = ReverseInt(number_of_images);
file.read((char*)&n_rows, sizeof(n_rows));
n_rows = ReverseInt(n_rows);
file.read((char*)&n_cols, sizeof(n_cols));
n_cols = ReverseInt(n_cols);
for (int i = 0; i < number_of_images; ++i) {
cv::Mat tp = cv::Mat::zeros(n_rows, n_cols, CV_8UC1);
for (int r = 0; r < n_rows; ++r) {
for (int c = 0; c < n_cols; ++c) {
unsigned char temp = 0;
file.read((char*)&temp, sizeof(temp));
tp.at<uchar>(r, c) = (int)temp;
}
}
vec.push_back(tp);
}
file.close();
}
return number_of_images;
}
解码图像对应数值
void read_Mnist_Label(std::string filename, std::vector<int> &vec)
{
std::ifstream file(filename, std::ios::binary);
if (file.is_open()) {
int magic_number = 0;
int number_of_images = 0;
int n_rows = 0;
int n_cols = 0;
file.read((char*)&magic_number, sizeof(magic_number));
magic_number = ReverseInt(magic_number);
file.read((char*)&number_of_images, sizeof(number_of_images));
number_of_images = ReverseInt(number_of_images);
for (int i = 0; i < number_of_images; ++i) {
unsigned char temp = 0;
file.read((char*)&temp, sizeof(temp));
vec[i] = (int)temp;
}
file.close();
}
}
生成图像文件
int decodeDatabase(std::string filenameImages,std::string filenameLabels,std::string imagesPathSave)
{
// read MNIST image into OpenCV Mat vector
std::vector<cv::Mat> vec_train_images;
int number_of_train_images = read_Mnist(filenameImages, vec_train_images);
// read MNIST label into int vector
std::vector<int> vec_train_labels(number_of_train_images);
read_Mnist_Label(filenameLabels, vec_train_labels);
if (vec_train_images.size() != vec_train_labels.size()) {
std::cout << "parse MNIST train file error" << std::endl;
return -1;
}
// save images
int count_digits[10];
std::fill(&count_digits[0], &count_digits[0] + 10, 0);
for (int i = 0; i < vec_train_images.size(); i++) {
int number = vec_train_labels[i];
std::string image_name = GetImageName(number, count_digits);
image_name = imagesPathSave + image_name + ".jpg";
cv::imwrite(image_name, vec_train_images[i]);
}
return 0;
}
每个数值各选20张图像合并成一个图像文件
int mergeSomeImages()
{
std::string images_path = ".././mnistFile/train_images/";
int width = 28 * 20;
int height = 28 * 10;
cv::Mat dst(height, width, CV_8UC1);
for (int i = 0; i < 10; i++) {
for (int j = 1; j <= 20; j++) {
int x = (j-1) * 28;
int y = i * 28;
cv::Mat part = dst(cv::Rect(x, y, 28, 28));
std::string str = std::to_string(j);
if (j < 10)
str = "0000" + str;
else
str = "000" + str;
str = std::to_string(i) + "_" + str + ".jpg";
std::string input_image = images_path + str;
cv::Mat src = cv::imread(input_image, 0);
if (src.empty()) {
fprintf(stderr, "read image error: %s\n", input_image.c_str());
return -1;
}
src.copyTo(part);
}
}
std::string output_image = images_path + "result.png";
cv::imwrite(output_image, dst);
return 0;
}