分析
考虑一个 m a x x ( x , l , r ) maxx(x,l,r) maxx(x,l,r)表示以左端点为 x x x,右端点在 [ l ∼ r ] [l\sim r] [l∼r]的范围内的最大值,那么维护的最大值也就是 s [ m x ] − s [ l − 1 ] s[mx]-s[l-1] s[mx]−s[l−1],而只有 m x mx mx是变动的,所以可以用RMQ去求解,把这个三元组扔进一个大根堆里面,跑 k k k次,但是处理完一个三元组后需要把它拆成 m a x x ( x , l , m x − 1 ) maxx(x,l,mx-1) maxx(x,l,mx−1)和 m a x x ( x , m x + 1 , r ) maxx(x,mx+1,r) maxx(x,mx+1,r),重新扔进大根堆
代码
#include <cstdio>
#include <cctype>
#include <queue>
#define min(a,b) ((a)<(b)?(a):(b))
#define rr register
using namespace std;
const int N=500011; long long ans;
int n,k,L,R,s[N],f[N][19],lg[N];
struct rec{
int x,l,r,mx;
bool operator <(const rec &t)const{
return s[mx]-s[x-1]<s[t.mx]-s[t.x-1];
}
};
priority_queue<rec>q;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline signed query(int l,int r){
rr int z=lg[r-l+1],p1=f[l][z],p2=f[r-(1<<z)+1][z];
return s[p1]>s[p2]?p1:p2;
}
signed main(){
n=iut(); k=iut(); L=iut(); R=iut();
for (rr int i=1;i<=n;++i) s[i]=s[i-1]+iut();
for (rr int i=2;i<=n;++i) lg[i]=lg[i>>1]+1;
for (rr int i=1;i<=n;++i) f[i][0]=i;
for (rr int j=1;(1<<j)<=n;++j)
for (rr int i=1;i+(1<<j)-1<=n;++i){
rr int p1=f[i][j-1],p2=f[i+(1<<(j-1))][j-1];
f[i][j]=s[p1]>s[p2]?p1:p2;
}
for (rr int i=1;i+L-1<=n;++i) q.push((rec){i,i+L-1,min(i+R-1,n),query(i+L-1,min(i+R-1,n))});
while (k--){
rr rec t=q.top(); q.pop(); ans+=s[t.mx]-s[t.x-1];
if (t.l!=t.mx) q.push((rec){t.x,t.l,t.mx-1,query(t.l,t.mx-1)});
if (t.mx!=t.r) q.push((rec){t.x,t.mx+1,t.r,query(t.mx+1,t.r)});
}
return !printf("%lld",ans);
}