RandomUnderSampler 中的fit_resample 是 imblearn.base.py中调用output = self._fit_resample(X, y)


imblearn.base.py中调用
output = self._fit_resample(X, y)

注意   _fit_resample()的定义位置只在base.py中而在

RandomUnderSampler 无

--- 正在进行 SMOTE 数据增强... --- C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\base.py:474: FutureWarning: `BaseEstimator._validate_data` is deprecated in 1.6 and will be removed in 1.7. Use `sklearn.utils.validation.validate_data` instead. This function becomes public and is part of the scikit-learn developer API. warnings.warn( Traceback (most recent call last): File "F:\DFI\data_augment.py", line 149, in <module> augment_traffic_data(INPUT_FILE, OUTPUT_FILE) File "F:\DFI\data_augment.py", line 63, in augment_traffic_data X_resampled_num, y_resampled = smote.fit_resample(X_num, y) File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\imblearn\base.py", line 208, in fit_resample return super().fit_resample(X, y) File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\imblearn\base.py", line 106, in fit_resample X, y, binarize_y = self._check_X_y(X, y) File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\imblearn\base.py", line 161, in _check_X_y X, y = self._validate_data(X, y, reset=True, accept_sparse=accept_sparse) File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\base.py", line 480, in _validate_data return validate_data(self, *args, **kwargs) File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\utils\validation.py", line 2961, in validate_data X, y = check_X_y(X, y, **check_params) File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\utils\validation.py", line 1370, in check_X_y X = check_array( File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\utils\validation.py", line 1107, in check_array _assert_all_finite( File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\utils\validation.py", line 120, in _assert_all_finite _assert_all_finite_element_wise( File "C:\Users\admin\miniconda3\envs\DFI\lib\site-packages\sklearn\utils\validation.py", line 169, in _assert_all_finite_element_wise raise ValueError(msg_err) ValueError: Input X contains infinity or a value too large for dtype('float64').
11-07
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值