tf.keras.layers.LSTM(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
implementation=2,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
time_major=False,
unroll=False,
**kwargs
)
For example:
>>> inputs = tf.random.normal([32, 10, 8])
>>> lstm = tf.keras.layers.LSTM(4)
>>> output = lstm(inputs)
>>> print(output.shape)
(32, 4)
>>> lstm = tf.keras.layers.LSTM(4, return_sequences=True, return_state=True)
>>> whole_seq_output, final_memory_state, final_carry_state = lstm(inputs)
>>> print(whole_seq_output.shape)
(32, 10, 4)
>>> print(final_memory_state.shape)
(32, 4)
>>> print(final_carry_state.shape)
(32, 4)
Arguments
- units: Positive integer, dimensionality of the output space.
- activation: Activation function to use. Default: hyperbolic tangent (
tanh). If you passNone, no activation is applied (ie. "linear" activation:a(x) = x). - recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (
sigmoid). If you passNone, no activation is applied (ie. "linear" activation:a(x) = x). - use_bias: Boolean (default
True), whether the layer uses a bias vector. - kernel_initializer: Initializer for the
kernelweights matrix, used for the linear transformation of the inputs. Default:glorot_uniform. - recurrent_initializer: Initializer for the
recurrent_kernelweights matrix, used for the linear transformation of the recurrent state. Default:orthogonal. - bias_initializer: Initializer for the bias vector. Default:
zeros. - unit_forget_bias: Boolean (default
True). If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also forcebias_initializer="zeros". This is recommended in Jozefowicz et al.. - kernel_regularizer: Regularizer function applied to the
kernelweights matrix. Default:None. - recurrent_regularizer: Regularizer function applied to the
recurrent_kernelweights matrix. Default:None. - bias_regularizer: Regularizer function applied to the bias vector. Default:
None. - activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). Default:
None. - kernel_constraint: Constraint function applied to the
kernelweights matrix. Default:None. - recurrent_constraint: Constraint function applied to the
recurrent_kernelweights matrix. Default:None. - bias_constraint: Constraint function applied to the bias vector. Default:
None. - dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
- recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
- implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. Default: 2.
- return_sequences: Boolean. Whether to return the last output. in the output sequence, or the full sequence. Default:
False. - return_state: Boolean. Whether to return the last state in addition to the output. Default:
False. - go_backwards: Boolean (default
False). If True, process the input sequence backwards and return the reversed sequence. - stateful: Boolean (default
False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. - time_major: The shape format of the
inputsandoutputstensors. If True, the inputs and outputs will be in shape[timesteps, batch, feature], whereas in the False case, it will be[batch, timesteps, feature]. Usingtime_major = Trueis a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. - unroll: Boolean (default
False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.
Call arguments
- inputs: A 3D tensor with shape
[batch, timesteps, feature]. - mask: Binary tensor of shape
[batch, timesteps]indicating whether a given timestep should be masked (optional, defaults toNone). - training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if
dropoutorrecurrent_dropoutis used (optional, defaults toNone). - initial_state: List of initial state tensors to be passed to the first call of the cell (optional, defaults to
Nonewhich causes creation of zero-filled initial state tensors).
https://keras.io/api/layers/recurrent_layers/lstm/
本文详细介绍了tf.keras.layers.LSTM层的使用方法及其参数设置,包括如何通过调整参数实现不同的RNN操作,如返回完整序列、状态以及反向处理输入序列等。同时,提供了实例代码展示LSTM层在不同配置下的输出形状。
4374

被折叠的 条评论
为什么被折叠?



