17、Matplotlib数据可视化全攻略

Matplotlib数据可视化全攻略

1. 图表基础元素添加

在数据可视化中,为了让图表更加清晰易读,我们常常需要添加一些基础元素,像网格和图例。

1.1 添加网格

网格有助于理解图表上每个点的位置。添加网格操作非常简单,只需调用 grid() 函数并传入 True 作为参数。以下是示例代码:

import matplotlib.pyplot as plt

plt.axis([0, 5, 0, 20])
plt.title('My first plot', fontsize=20, fontname='Times New Roman')
plt.xlabel('Counting', color='gray')
plt.ylabel('Square values', color='gray')
plt.text(1, 1.5, 'First')
plt.text(2, 4.5, 'Second')
plt.text(3, 9.5, 'Third')
plt.text(4, 16.5, 'Fourth')
plt.text(1.1, 12, r'$y = x^2$', fontsize=20, bbox={'facecolor': 'yellow', 'alpha': 0.2})
plt.grid(True)
plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
1.2 添加图例

图例是图表中不可或缺的重要元素,它能帮助读者理解不同系列数据的含

内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合Koopman算子理论与递归神经网络(RNN)的数据驱动建模方法,旨在对非线性纳米定位系统进行有效线性化建模,并实现高精度的模型预测控制(MPC)。该方法利用Koopman算子将非线性系统映射到高维线性空间,通过递归神经网络学习系统的动态演化规律,构建可解释性强、计算效率高的线性化模型,进而提升预测控制在复杂不确定性环境下的鲁棒性与跟踪精度。文中给出了完整的Matlab代码实现,涵盖数据预处理、网络训练、模型验证与MPC控制器设计等环节,具有较强的基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)可复现性和工程应用价值。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及自动化、精密仪器、机器人等方向的工程技术人员。; 使用场景及目标:①解决高精度纳米定位系统中非线性动态响应带来的控制难题;②实现复杂机电系统的数据驱动建模与预测控制一体化设计;③为非线性系统控制提供一种可替代传统机理建模的有效工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析实现流程,重点关注Koopman观测矩阵构造、RNN网络结构设计与MPC控制器耦合机制,同时可通过替换实际系统数据进行迁移验证,深化对数据驱动控制方法的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值