Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n] inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.
Example 1:
nums = [1, 3], n = 6
Return 1.
Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.
Example 2:
nums = [1, 5, 10], n = 20
Return 2.
The two patches can be [2, 4].
Example 3:
nums = [1, 2, 2], n = 5
Return 0.
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
class Solution(object):
def minPatches(self, nums, n):
res = 0
cur = 1
total = 1
i = 0
while total <= n:
if i < len(nums) and nums[i] <= total : #cur not in nums:
#res += 1
total += nums[i]
i += 1
else:
res += 1
total += total
#print nums,total
return res
最小补丁数以覆盖所有整数范围

本文讨论了如何使用最少的补丁来填充一个已排序的正整数数组,使其能形成从1到指定整数n的所有可能组合之和。通过实例解释了补丁添加策略和所需数量的计算。
276

被折叠的 条评论
为什么被折叠?



