基于LangChain的大模型学习手册之Embedding(保姆级)

前言

时至今日,经过2年的“攻城拔寨”,大模型显然吹进了“寻常百姓家”。如果你还不了解ChatGPT,不了解通义、文心、混元等国内任意一款大模型产品,那么请来博主这里坐坐,我们“边看边聊”

在这里插入图片描述

随着ChatGPT的问世,仿佛一夜间,把AI的门槛从金字塔顶端拉至了腰身,甚至脚跟处,神不神奇?当然神奇,这个领域曾经是机器学习擅长的圈子,除非你具备相当的基础、甚至专业能力,否则可以说“与你无关”

如今呢,AIGC遍天下,工具化浪潮代替了原始的生产方式,你不需要懂数学、懂计算机,什么算法、数据都可以抛在脑后。你要做的只需要“懂”它即可。唯有懂它,才能很好的利用它,也就是AI工具的使命和价值。

今天博主带各位,先了解一下如何让大模型“懂”你吧。刚才讲是你要懂它,现在反过来它要懂你,这是为什么? 因为大模型具备一定的“类人思维”,所以懂你是前提。

Q1:什么是RAG

如何理解懂你这件事呢? 这可不像爱一个人,随着时间进程,彼此间会自然发生。大模型可以说是一块“木头”,需要你告诉它才行。比如你想查个什么东东,让它按照你的意志进行回答问题,怎么办?这就不得不提RAG了。

不熟悉机器学习的同学,可能不了解RAG。但是熟悉的同学,一定知道它的作用。以下是博主从百度百科摘录的介绍,可窥一二:

检索增强生成Retrieval-augmented Generation),简称RAG,是当下热门的大模型前沿技术之一。 检索增强生成模型结合了语言模型和信息检索技术。具体来说,当模型需要生成文本或者回答问题时,它会先从一个庞大的文档集合中检索出相关的信息,然后利用这些检索到的信息来指导文本的生成,从而提高预测的质量和准确性。——百度百科

怎么理解它?来看看下面这张图,也许有些帮助:

在这里插入图片描述

一句话总结:用户的问题结合RAG后,把检索结果再次输入到大模型,生成新的结果。
如果觉得难以理解,可以参考下面简化后的流程:

在这里插入图片描述
总之,就是讲了一件事,在让大模型懂你前,必须“喂饱”它。然后让它有意识的懂你并按你的意志运转。通过RAG的过程,博主梳理几个关键词:

序号名称作用
1question用户的问题
2textsplit文本分段,为下一步embedding做准备
3embedding文本嵌入,机器学习领域文本向量化的关键步骤
4retrieval文本检索,结合用户问题和embedding数据检索
5document检索结果,一个标准化的文档对象

其中,embedding是关键的一环。

Q2:如何完成Embedding(嵌入)

通俗的讲,embedding就是把你的数据转换成机器可识别的格式。在机器学习领域,通常以向量的形式存储数据,一是为了方便检索,二是为了提高检索质量。当然embedding可通过多种方式完成,博主选择基于langchain完成以下实践。

提示:在正式完成以下操作前,需安装langchain、langchain-core、langchain-community、langchain-text-splitters、langchain-chroma、chroma、pypdf、dashscope

1. 文档加载

首先需要把文档转换为符合嵌入的标准文档,即Document。

1.1 load pdf

使用PyPDFLoader工具完成:

# 加载PDF文件
from langchain_community.document_loaders import PyPDFLoader
directory_path = "/pdf"
mydata = []
for filename in os.listdir(directory_path):
    # 检查文档格式
    if filename.endswith(".pdf"):
        loader = PyPDFLoader(directory_path+'\\'+filename)
        mydata.append(loader.load_and_split())
1.2 load txt/html

使用UnstructuredHTMLLoader工具完成:

from langchain_community.document_loaders import UnstructuredHTMLLoader
# 加载html文件为document
file_path = "/html"
loader = UnstructuredHTMLLoader(file_path)
mydata = loader.load()
1.3 load word

使用UnstructuredWordDocumentLoader工具完成:

from langchain_community.document_loaders import UnstructuredWordDocumentLoader
# 加载docx/doc文件为document
directory_path = "/word"
mydata = []
for filename in os.listdir(directory_path):
    # 检查所有doc以及docx后缀的文件
    if filename.endswith(".doc") or filename.endswith(".docx"):
        loader = UnstructuredWordDocumentLoader(directory_path+'\\'+filename, mode="elements", strategy="fast")
        mydata.append(loader.load())

2. 文档切割

你可以把第1步加载后的document按一定的chunk切分为一份一份小文档:

from langchain_text_splitters import CharacterTextSplitter
# 创建分割器
text_splitter = CharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=0
)
# 加载文档
docs = []
for document in mydata:
    doc = text_splitter.split_documents(document)
    docs.append(doc)

其中chunk_size是每块文本(即chunk)有序切割的最大长度;chunk_overlap是相邻chunk重叠的token数量。

3. 嵌入模型

嵌入模型实际上是将分割后的文档(chunk)转换为向量的工具。比如阿里的text-embedding-v1或者hugeface的all-MiniLM-L6-v2等。这里以阿里的模型为例,结合langchain可以这样定义一个嵌入模型:

from langchain_community.embeddings import DashScopeEmbeddings
embedding = DashScopeEmbeddings(
    model="text-embedding-v1",
    dashscope_api_key='阿里dashscope api key'
)

4. 向量存储

完成前3步,最后一步就是存储了。怎么存?向量喽~

from langchain_community.vectorstores import Chroma
vector_dir = '/db'
vectordb = Chroma.from_documents(
    documents=docs,
    embedding=embedding,
    persist_directory=vector_dir 
)
# 持久化,支持迁移
vectordb.persist()

至此,你轻松的完成了文本向量的持久化,为下一步大模型RAG的实现,打下了坚实的数据基础。


结语

大模型本质是工具,善者善用。如何利用它的长处以克服它的“劣势”,才是使用它的目的。而RAG为合理、正确的使用它,提供了一个最佳路径,同时embedding又是RAG的必由之路。所以本文可为你提供一些灵感,助你上道~

走过的、路过的盆友们,点点赞,收收藏,并加以指导,以备不时之需哈~

精彩回顾

基于DashScope+Streamlit构建你的机器学习助手(入门级)
基于LangChain的大模型学习手册(入门级)
基于Python的大模型学习手册(入门级)


在这里插入图片描述

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值