基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[6]-实现Milvus向量检索+实现自定义关键词调整Embedding模型

基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[6]-实现Milvus向量检索+实现自定义关键词调整Embedding模型

0.Milvus与Faiss对比

Milvus相对于Faiss的优势主要体现在以下几个方面:

  • 在线数据更新与实时搜索:

    • Milvus支持在线的数据更新和实时的向量搜索,这意味着在数据频繁变动的场景下,用户无需重新构建整个索引,从而大大减少了维护成本。
    • 相比之下,Faiss不支持在线数据更新,如果需要添加或删除数据,可能需要重新构建整个索引,这在某些应用场景下可能会带来不便。
  • 灵活性和可扩展性:

    • Milvus支持灵活的数据结构和索引方式,可以满足不同应用场景的需求。
    • 同时,Milvus支持水平扩展,通过增加节点可以提高整个系统的处理能力,从而适应更大规模的数据集。
  • 易用性:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值