【笔记】高数常用计算公式

极限:

\underset{n->\infty }{limit}\ q^{n} = \left\{\begin{matrix} 1 & q = 1\\ 0 & |q| < 1\\ \infty & |q| > 1\\ none & q = -1 \end{matrix}\right.

\underset{n->\infty }{limit}\ \frac {1}{n^{k}}= 0,\underset{n->\infty }{limit}\ n^{k}= \infty(k > 0)

\underset{n->\infty }{limit} \sqrt[n]{a} = 1(a > 0),\underset{n->\infty }{limit} \sqrt[n]{n} = 1

\underset{n->\infty }{limit}\ \frac {a^{n}}{n!} = 0(a > 0),\underset{n->\infty }{limit}\ \frac {n^{k}}{a^{n}} = 0(a > 1, k > 0)

\underset{n->\infty }{limit}\ \frac {n!}{n^{n}} = 0,\underset{n->\infty }{limit}\ \frac {1}{\sqrt [n]{n}} = 0

\underset{n->\infty }{limit}(1 + \frac {1}{2} + ... + \frac {1}{n}) = \infty

\underset{n->\infty }{limit}\ (1 + \frac {1}{n})^{n} = e,(e = 2.718281...)

\underset{x -> \infty }{limit}\ (1 + \frac {1}{x})^{x} = e, \underset{x -> 0 }{limit}(1 + x)^{\frac {1}{x}}=e

\underset{x -> \infty }{limit} (\frac {x + a}{x + b})^{x} = \frac {e^{a}}{e^{b}} = e^{a - b}

\underset{x -> 0 }{limit}\ \frac {sinx}{x} = 1

\underset{x -> 0 }{limit}\ \frac {ln(1 + x)}{x} = 1

\underset{x -> 0 }{limit}\ \frac {\sqrt {1 + x} - 1}{x} = \frac {1}{2}

\underset{x -> \infty }{limit}\ \frac {a_{0}x^{m} + a_{1}x^{m - 1} + ... + a_{m - 1}x + a_{m}}{b0x^{n} + b_{1}x^{n - 1} + ... + b_{n - 1}x + b_{n}} = \left\{\begin{matrix} \frac {a_{0}}{b_{0}} & m = n\\ 0 & m < n\\ \infty & m > n \end{matrix}\right.

等价无穷小

x\rightarrow 0时,存在下记等价无穷小:

\\sinx \sim x \ \ \ \ \ \ \ tanx\sim x\\ e^{x} - 1\sim x \ \ \ \ \ \ \ ln(1 + x)\sim x\\ (1 + x)^{a} - 1 \sim ax \ \ \ \ \ \ \ arcsinx \sim x \\ arctanx \sim x \ \ \ \ \ \ \ a^{x} - 1 \sim xlna(a > 0, a \neq 1)\\ x^{m} + x^{k} \sim x^{m}(k > m > 0) \ \ \ \ \ \ \ 1 - cosx \sim \frac {1}{2}x^{2}\\ \sqrt {1 + x} - 1 \sim \frac {x}{2} \ \ \ \ \ \ \ x - sinx \sim \frac {x^{3}}{6}\\ tanx - x \sim \frac {x^{3}}{3} \ \ \ \ \ \ \ tanx - sinx \sim \frac {x^{2}}{2}\\ arcsinx - x \sim \frac {x^3}{6} \ \ \ \ \ \ \ x - arctanx \sim \frac {x^{3}}{3}\\ x - ln(1 + x) \sim \frac {x^{2}}{2}

导数

\\(x^{a})' = ax^{a - 1} \ \ \ \ \ \ \ (a^{x})' = a^{x}lna(a > 0, a \neq 1)\\ (e^{x})' = e^{x} \ \ \ \ \ \ \ (log_{a}x)' = \frac {1}{xlna}(a > 0, a \neq 1)\\ (lnx)' = \frac {1}{x} \ \ \ \ \ \ \ (sinx)' = cosx\\ (cosx)' = -sinx \ \ \ \ \ \ \ (tanx)' = sec^{2}x\\ (cotx)' = -csc^{2}x \ \ \ \ \ \ \ (secx)' = secx\ tanx\\ (cscx)' = -cscx\ cotx \ \ \ \ \ \ \ (arcsinx)' = \frac {1}{\sqrt {1 - x^{2}}}\\ (arccosx)' = -\frac {1}{1 - x^{2}} \ \ \ \ \ \ \ (arctanx)' = \frac {1}{1 + x^{2}}\\ (arccotx)' = - \frac {1}{1 + x^{2}}

麦克劳林公式

e^{x} = 1 + x + \frac {1}{2!}x^{2} + ... + \frac {1}{n!}x^{n} + o(x^{n})

sinx = x - \frac {1}{3!}x^{3} + ... + \frac {(-1)^{n}}{(2n + 1)!}x^{2n + 1} + o(x^{2n + 2})

cosx = 1 - \frac {1}{2!}x^{2} + ... + \frac {(-1)n}{(2n)!}x^{2n} + o(x^{2n + 1})

ln(1 + x) = x - \frac {x^{2}}{2} + \frac {x^{3}}{3} - ... + (-1)^{n - 1}\frac {x^{n}}{n} + o(x^{n})

(1 + x)^{m} = 1 + mx + \frac {m(m - 1)}{2!}x^{2} + ... + \frac {m(m - 1)...(m - n + 1)}{n!}x^{n} + o(x^{n})

arcsinx = x + \frac {1}{2} \frac {x^{3}}{3} + \frac {1}{2}\frac {3}{4}\frac {x^{5}}{5} + ... + \frac{(2n - 3)!!}{(2n - 2)!!}\frac {x^{2n - 1}}{2n - 1} + o(x^{2n})

arctanx = x - \frac {x^{3}}{3} + \frac {x^{5}}{5} - ... + (-1)^{n - 1}\frac {x^{2n - 1}}{2n - 1} + o(x^{2n})

\frac {1}{1 - x} = 1 + x + x^{2} + ... + x^{n} + o(x^{n})

\frac {1}{1 + x} = 1 - x + x^{2} - ... + (-1)^{n}x^{n} + o(x^{n})

\sqrt {1 + x} = 1 + \frac {x}{2} - \frac {x^{2}}{8} + o(x^{2})

\frac {1}{\sqrt {1 + x}}= 1 - \frac {x}{2} + \frac {3}{8}x^{2} + o(x^{2})

tanx = x + \frac {x^{3}}{3} + \frac {2}{15}x^{5} + o(x^{6})

三角函数公式

cos(a \pm b) = cosa\ cosb \mp sina\ sinb

sin(a\pm b) = sina\ cosb \pm sinb\ cosa

sin2a = 2sina\ cosa

tan(a \pm b) = \frac {tana \pm tanb}{1 \mp tana\ tanb}

tan2a = \frac {2tana}{1 - tan^{2}a}

sina + sinb = 2sin\frac {a + b}{2}cos\frac {a - b}{2}

sina - sinb = 2cos\frac {a + b}{2}sin\frac {a - b}{2}

cosa + cosb = 2cos\frac {a + b}{2}cos\frac {a - b}{2}

cosa - cosb = -2sin\frac {a + b}{2}sin\frac {a - b}{2}

tana \pm tanb = \frac {sin(a \pm b)}{cosa \ cosb}

cota \pm cotb = \pm \frac {sin(a \pm b)}{sina \ sinb}

sina\ cosb = \frac {sin(a + b) + sin(a - b)}{2}

cosa\ sinb = \frac {sin(a + b) - sin(a - b)}{2}

cosa\ cosb = \frac {cos(a + b) + cos(a - b)}{2}

sina\ sinb = \frac {cos(a + b) - cos(a - b)}{2}

sec^{2}x - 1 = \frac {1}{cos^{2}x} - 1 = \frac {1 - cos^{2}x}{cos^{2}x} = \frac {sin^{2}x}{cos^{2}x} = tan^{2}x

cos2a = 2cos^{2}a - 1 = 1 - 2sin^{2}a = cos^{2}a - sin^{2}a

1.全主元斯约当消去法2.LU分解法3.追赶法4.五对角线性方程组解法5.线性方程组解的迭代改善6.范德蒙方程组解法7.托伯利兹方程组解法8.奇异值分解9.线性方程组的共轭梯度法10.对称方程组的乔列斯基分解法11.矩阵的QR分解12.松弛迭代法第2章插值1.拉格朗日插值2.有理函插值3.三次样条插值4.有序表的检索法5.插值多项式6.二元拉格朗日插值7.双三次样条插值第3章值积分1.梯形求积法2.辛普森求积法3.龙贝格求积法4.反常积分5.斯求积法6.三重积分第4章特殊函1.г函、贝塔函、阶乘及二项式系2.不完全г函、误差函3.不完全贝塔函4.零阶、一阶和任意整阶的第一、二类贝赛函5.零阶、一阶和任意整阶的第一、二类变形贝赛函6.分阶第一类贝赛尔函和变形贝赛尔函7.指积分和定指积分8.连带勒让德函第5章函逼近1.级求和2.多项式和有理函3.切比雪夫逼近4.积分和导的切比雪夫逼近5.有切比雪夫逼近函的多项式逼近第6章特征值问题1.对称矩阵的雅可比变换2.变实对称矩阵为三对角对称矩阵3.三对角矩阵的特征值和特征向量4.变一般矩阵为赫申伯格矩阵5.实赫申伯格矩阵的QR算法第7章据拟合1.直线拟合2.线性最小二乘法3.非线性最小二乘法4.绝对值偏差最小的直线拟合第8章方程求根和非线性方程组的解法1.图解法2.逐步扫描法和二分法3.割线法和试位法4.布伦特方法5.牛顿拉斐森法6.求复系多项式根的拉盖尔方法7.求实系多项式根的贝尔斯托方法8.非线性方程组的牛顿拉斐斯方法第9章函的极值和最优化1.黄金分割搜索法2.不用导的布伦特法3.用导的布伦特法4.多元函的下山单纯形法5.多元函的包维尔法6.多元函的共轭梯度法7.多元函的变尺度法8.线性规划的单纯形法第10章傅里叶变换谱方法1.复据快速傅里叶变换算法2.实据快速傅里叶变换算法一3.实据快速傅里叶变换算法二4.快速正弦变换和余弦变换5.卷积和逆卷积的快速算法6.离散相关和自相关的快速算法7.多维快速傅里叶变换算法第11章据的统计描述1.分布的矩——均值、平均差、标准差、方差、斜差和峰态2.中位的搜索3.均值与方差的显著性检验4.分布拟合的X平方检验5.分布拟合的K-S检验法第12章解常微分方程组1.定步长四阶龙格库塔法2.自适应变步长的龙格库塔法3.改进的中点法4.外推法第13章偏微分方程的解法1.解边值问题的松驰法2.交替方向隐式方法
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值