95. Unique Binary Search Trees II
Medium
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Tips: Here I leverage postorder to traverse the binary tree, so I can get left and right node first, then create the root node. The difference between other recursive tree problem. The left and right children is a list instead of just a node, so I need to cope with the root node using double 'for' expression to get all the possible combination.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<TreeNode> generateTrees(int n) {
if (n <= 0) {
return new ArrayList<TreeNode>();
}
// node label from 1 to n
return generateTrees(1, n);
}
private List<TreeNode> generateTrees(int left, int right) {
if (left > right) {
List<TreeNode> tResult = new ArrayList<>();
tResult.add(null);
return tResult;
} else if (left == right) {
return Arrays.asList(new TreeNode(left));
} else {
// left right root
List<TreeNode> result = new ArrayList<>();
for (int i = left; i <= right; i++) {
List<TreeNode> leftChild = generateTrees(left, i - 1);
List<TreeNode> rightChild = generateTrees(i + 1, right);
for (TreeNode ln : leftChild) {
for (TreeNode rn: rightChild) {
TreeNode root = new TreeNode(i);
root.left = ln;
root.right = rn;
result.add(root);
}
}
}
return result;
}
}
}