Given an integer n
, return all the structurally unique BST's (binary search trees), which has exactly n
nodes of unique values from 1
to n
. Return the answer in any order.
Example 1:
Input: n = 3 Output: [[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]
Example 2:
Input: n = 1 Output: [[1]]
Constraints:
1 <= n <= 8
这题是96. Unique Binary Search Trees的拓展,不仅要知道树的个数,还要求构造每棵树并且返回每棵树的根节点。基本思路跟96. Unique Binary Search Trees差不多,用递归法,但是由于要构造具体的二叉搜索树,递归函数的输入就不能是个数而应该是一个范围。
假设从[left, right]取第i个值作为根节点,[left, i - 1]构造的所有树都可以是左子树,[i + 1, right]构造的所有树都可以是右子树。因此左右子树列表里任意各挑一个匹配都可以构成一棵以i的根节点的唯一的树。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def generateTrees(self, n: int) -> List[Optional[TreeNode]]:
res = []
def helper(l, r):
if l > r:
return [None]
if l == r:
return [TreeNode(l)]
res = []
for i in range(l, r + 1):
llist = helper(l, i - 1)
rlist = helper(i + 1, r)
for ln in llist:
for rn in rlist:
root = TreeNode(i, ln, rn)
res.append(root)
return res
return helper(1, n)