ZOJ 2619 Generator (概率、AC自动机、高斯消元)

Generator


题意:给定一个数N,代表可以选前N个字母。然后给定一个仅有前N个字母组成的字符串,问从空串开始构造,每次可以在已有基础上从前N个字母中挑选一个加在后面,问构造的字符串的长度期望是多少?

思路:如果给定的串长度为L,那么对于构造的串,对应的状态就是0到L之间的数。如果为L即为构造成功。记F[i] 为从i状态到达L状态期望的步数,那么对于0到L-1中的每个i,可以列出一个状态转移:
F[i] = 1 + 1 / n * ΣF[Ci,j] (其中Ci,j 表示在i状态末尾添加第j个字母之后,得到的新状态。
1. 上面可以得到一个方程组,解的的F[0]即为答案(PS 这道题用double解高斯消元过不了,所以要用解整数的高斯消元)
2. Ci,j 的实质是求给定字符串的第i个前缀添加字母后变成哪一个前缀,可以用AC自动机来预处理。

代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, n) for (int i = 0; i < n; i++)
#define debug puts("===============")
#define eps 1e-6
typedef long long ll;
typedef unsigned long long ULL;
using namespace std;
const int maxn = 15;
long long a[maxn][maxn] = {0}, ans[maxn] = {0};
bool l[maxn];
int n;
inline int solve(long long a[][maxn], bool l[], long long ans[], const int& n) {
    int res = 0, r = 0;
    for (int i = 0; i < n; i++) l[i] = false;
    for (int i = 0; i < n; i++) {
        for (int j = r; j < n; j++)
            if (a[j][i] != 0) {
                for (int k = i; k <= n; k++) swap(a[j][k], a[r][k]);
                break;
            }
        if (a[r][i] == 0) {
            res++;
            continue;
        }
        for (int j = 0; j < n; j++)
            if (j != r && a[j][i] != 0) {
                if (a[j][i] < 0) {
                    for (int k = 0; k <= n; k++) a[j][k] *= -1;
                }
                long long gcd = __gcd(a[r][i], a[j][i]);
                long long lcm = a[r][i] / gcd * a[j][i];
                long long jmul = lcm / a[j][i];
                long long imul = lcm / a[r][i];
                for (int k = 0; k <= n; k++) {
                    a[j][k] = a[j][k] * jmul - a[r][k] * imul;
                }
            }
        l[i] = true, r++;
    }
    for (int i = r; i < n; i++) if (a[i][n] != 0) return -1;
    for (int i = 0; i < n; i++)
        if (l[i])
            for (int j = 0; j < n; j++)
                if (a[j][i] != 0)
                    ans[i] = a[j][n] / a[j][i];

    return res;
}

const int maxnode = 15 * 26;
int charset;
struct ACAutomaton {
    int ch[maxnode][26];
    int fail[maxnode];
    int Q[maxnode];
    int val[maxnode];
    int sz;
    int ID[128];
    void init() {
        fail[0] = 0;
        for (int i = 0; i < 26; i++) ID[i + 'A'] = i;
    }
    void reset() {
        sz = 1;
        memset(ch[0], 0, sizeof(ch[0]));
    }
    void Insert(char* s, int key) {
        int u = 0;
        for (; *s; s++) {
            int c = ID[*s];
            if (!ch[u][c]) {
                memset(ch[sz], 0, sizeof(ch[sz]));
                val[sz] = 0;
                ch[u][c] = sz++;
            }
            u = ch[u][c];
        }
        val[u] = key;
    }
    void Construct () {
        int *s = Q, *e = Q;
        for (int i = 0; i < charset; i++) {
            if (ch[0][i]) {
                *e++ = ch[0][i];
                fail[ch[0][i]] = 0;
            }
        }
        while(s != e) {
            int u = *s++;
            if (val[fail[u]]) val[u] = 1;
            for (int i = 0; i < charset; i++) {
                int &v = ch[u][i];
                if (v) {
                    *e++ = v;
                    fail[v] = ch[fail[u]][i];
                } else {
                    v = ch[fail[u]][i];
                }
            }
        }
    }

    void work() {
        double t = 1.0 / charset;
        //cout<<charset<<endl;
        for (int i = 0; i < sz - 1; i++) {
            a[i][i] += charset, a[i][sz - 1] += charset;
            for (int j = 0; j < charset; j++) {
                if (!val[ch[i][j]]) {
                    //cout<<i<<" "<<ch[i][j]<<endl;
                    a[i][ch[i][j]] -= 1;
                }
            }
        }
    }
} AC;

int main () {
    int n, t, cas = 1;
    char str[15];
    scanf("%d", &t);
    AC.init();
    while(t--) {
        scanf("%d%s", &n, str);
        AC.reset();
        charset = n;
        AC.Insert(str, 1);
        memset(a, 0, sizeof(a));
        AC.Construct(); //得到状态转移
        AC.work(); //构造方程
        solve(a, l, ans, AC.sz - 1);
        if (cas != 1) putchar('\n');
        printf("Case %d:\n%lld\n", cas++, ans[0]);
    }
    return 0;
}




以下是ZOJ1626的C++ AC代码,使用了旋转卡壳算法: ```c++ #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #define MAXN 100010 #define eps 1e-8 #define INF 1e20 using namespace std; struct point { double x,y; friend point operator -(point a,point b) { point res; res.x=a.x-b.x; res.y=a.y-b.y; return res; } friend bool operator <(point a,point b) { if(fabs(a.x-b.x)<eps) return a.y<b.y; return a.x<b.x; } friend double operator *(point a,point b) { return a.x*b.y-a.y*b.x; } friend double dis(point a,point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } }a[MAXN],b[MAXN],st[MAXN]; int n; double ans=INF; int cmp(point a,point b) { double tmp=(a-b)*(a[1]-b); if(fabs(tmp)<eps) return dis(a,a[1])-dis(b,a[1])<0; return tmp>0; } int main() { while(~scanf("%d",&n) && n) { for(int i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y); sort(a+1,a+n+1); int tot=0; for(int i=1;i<=n;i++) { while(tot>=2 && (st[tot]-st[tot-1])*(a[i]-st[tot])<0) tot--; st[++tot]=a[i]; } int k=tot; for(int i=n-1;i>=1;i--) { while(tot>k && (st[tot]-st[tot-1])*(a[i]-st[tot])<0) tot--; st[++tot]=a[i]; } tot--; for(int i=1;i<=tot;i++) b[i]=st[i]; int tmp=1; for(int i=2;i<=tot;i++) if(b[i].y<b[tmp].y) tmp=i; swap(b[1],b[tmp]); sort(b+2,b+tot+1,cmp); st[1]=b[1]; st[2]=b[2]; k=2; for(int i=3;i<=tot;i++) { while(k>1 && (st[k]-st[k-1])*(b[i]-st[k])<=0) k--; st[++k]=b[i]; } double ans=0; if(k==2) ans=dis(st[1],st[2]); else { st[k+1]=st[1]; for(int i=1;i<=k;i++) for(int j=1;j<=k;j++) ans=max(ans,dis(st[i],st[j])); } printf("%.2lf\n",ans/2); } return 0; } ``` 其中,结构体 `point` 表示二维平面上的一个点,包含了点的坐标和一些基本操作。函数 `cmp` 是旋转卡壳算法中的比较函数,按照点到起点的极角从小到大排序。在主函数中,先使用 Graham 扫描法求出点集的凸包,然后按照旋转卡壳的步骤,求出凸包上的最远点对距离作为最小直径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值