71、Policy Gradient Methods in Reinforcement Learning

Policy Gradient Methods in Reinforcement Learning

1. Introduction to Temporal Difference and Policy Gradient Concepts

In reinforcement learning, understanding the concepts of temporal difference and policy gradient methods is crucial.

1.1 Temporal Difference Learning

When $\lambda = 1$, the approach is equivalent to using Monte - Carlo evaluations to compute the ground - truth. At $\lambda = 1$, new error information is used to fully correct past mistakes without discount, resulting in an unbiased estimate. Here, $\lambda$ is used for step discounting, while $\gamma$ is used in computing the TD - error $\delta_t$. The parameter $\lambda$ is algorithm - specific, and $\gamma$ is environment - specific.

Using $\lambda = 1$ or Monte

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值