智能指针

转自:http://www.cnblogs.com/hktk/archive/2012/07/15/2592416.html

一、简介

由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete。程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见。

用智能指针便可以有效缓解这类问题,本文主要讲解参见的智能指针的用法。包括:std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array、boost::weak_ptr、boost::intrusive_ptr。你可能会想,如此多的智能指针就为了解决new、delete匹配问题,真的有必要吗?看完这篇文章后,我想你心里自然会有答案。

下面就按照顺序讲解如上 7 种智能指针(smart_ptr)。

二、具体使用

1、总括

对于编译器来说,智能指针实际上是一个栈对象,并非指针类型,在栈对象生命期即将结束时,智能指针通过析构函数释放有它管理的堆内存。所有智能指针都重载了“operator->”操作符,直接返回对象的引用,用以操作对象。访问智能指针原来的方法则使用“.”操作符。

访问智能指针包含的裸指针则可以用 get() 函数。由于智能指针是一个对象,所以if (my_smart_object)永远为真,要判断智能指针的裸指针是否为空,需要这样判断:if (my_smart_object.get())。

智能指针包含了 reset() 方法,如果不传递参数(或者传递 NULL),则智能指针会释放当前管理的内存。如果传递一个对象,则智能指针会释放当前对象,来管理新传入的对象。

我们编写一个测试类来辅助分析:

class Simple {

public:

Simple(int param = 0) {

number = param;

std::cout << "Simple: " << number << std::endl;

}

~Simple() {

std::cout << "~Simple: " << number << std::endl;

}

void PrintSomething() {

std::cout << "PrintSomething: " << info_extend.c_str() << std::endl;

}

std::string info_extend;

int number;

};

2、std::auto_ptr

std::auto_ptr 属于 STL,当然在 namespace std 中,包含头文件 #include<memory> 便可以使用。std::auto_ptr 能够方便的管理单个堆内存对象。

我们从代码开始分析:

void TestAutoPtr() {

std::auto_ptr<Simple> my_memory(new Simple(1)); // 创建对象,输出:Simple:1

if (my_memory.get()) { // 判断智能指针是否为空

my_memory->PrintSomething(); // 使用 operator-> 调用智能指针对象中的函数

my_memory.get()->info_extend = "Addition"; // 使用 get() 返回裸指针,然后给内部对象赋值

my_memory->PrintSomething(); // 再次打印,表明上述赋值成功

(*my_memory).info_extend += " other"; // 使用 operator* 返回智能指针内部对象,然后用“.”调用智能指针对象中的函数

my_memory->PrintSomething(); // 再次打印,表明上述赋值成功

}

} // my_memory 栈对象即将结束生命期,析构堆对象 Simple(1)

执行结果为:

Simple: 1

PrintSomething:

PrintSomething: Addition

PrintSomething: Addition other

~Simple: 1

上述为正常使用 std::auto_ptr 的代码,一切似乎都良好,无论如何不用我们显示使用该死的delete 了。

其实好景不长,我们看看如下的另一个例子:

void TestAutoPtr2() {

std::auto_ptr<Simple> my_memory(new Simple(1));

if (my_memory.get()) {

std::auto_ptr<Simple> my_memory2; // 创建一个新的 my_memory2 对象

my_memory2 = my_memory; // 复制旧的 my_memory 给 my_memory2

my_memory2->PrintSomething(); // 输出信息,复制成功

my_memory->PrintSomething(); // 崩溃

}

}

最终如上代码导致崩溃,如上代码时绝对符合 C++ 编程思想的,居然崩溃了,跟进std::auto_ptr 的源码后,我们看到,罪魁祸首是“my_memory2 = my_memory”,这行代码,my_memory2 完全夺取了 my_memory 的内存管理所有权,导致 my_memory 悬空,最后使用时导致崩溃。

所以,使用 std::auto_ptr 时,绝对不能使用“operator=”操作符。作为一个库,不允许用户使用,确没有明确拒绝[1],多少会觉得有点出乎预料。

看完 std::auto_ptr 好景不长的第一个例子后,让我们再来看一个:

void TestAutoPtr3() {

std::auto_ptr<Simple> my_memory(new Simple(1));

if (my_memory.get()) {

my_memory.release();

}

}

执行结果为:

Simple: 1

看到什么异常了吗?我们创建出来的对象没有被析构,没有输出“~Simple: 1”,导致内存泄露。当我们不想让 my_memory 继续生存下去,我们调用 release() 函数释放内存,结果却导致内存泄露(在内存受限系统中,如果my_memory占用太多内存,我们会考虑在使用完成后,立刻归还,而不是等到 my_memory 结束生命期后才归还)。

正确的代码应该为:

void TestAutoPtr3() {

std::auto_ptr<Simple> my_memory(new Simple(1));

if (my_memory.get()) {

Simple* temp_memory = my_memory.release();

delete temp_memory;

}

}

void TestAutoPtr3() {

std::auto_ptr<Simple> my_memory(new Simple(1));

if (my_memory.get()) {

my_memory.reset(); // 释放 my_memory 内部管理的内存

}

}

原来 std::auto_ptr 的 release() 函数只是让出内存所有权,这显然也不符合 C++ 编程思想。

总结:std::auto_ptr 可用来管理单个对象的对内存,但是,请注意如下几点:

(1) 尽量不要使用“operator=”。如果使用了,请不要再使用先前对象。

(2) 记住 release() 函数不会释放对象,仅仅归还所有权。

(3) std::auto_ptr 最好不要当成参数传递(读者可以自行写代码确定为什么不能)。

(4) 由于 std::auto_ptr 的“operator=”问题,有其管理的对象不能放入 std::vector等容器中。

(5) ……

使用一个 std::auto_ptr 的限制还真多,还不能用来管理堆内存数组,这应该是你目前在想的事情吧,我也觉得限制挺多的,哪天一个不小心,就导致问题了。

由于 std::auto_ptr 引发了诸多问题,一些设计并不是非常符合 C++ 编程思想,所以引发了下面 boost 的智能指针,boost 智能指针可以解决如上问题。

让我们继续向下看。

3、boost::scoped_ptr

boost::scoped_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。boost::scoped_ptr 跟 std::auto_ptr 一样,可以方便的管理单个堆内存对象,特别的是,boost::scoped_ptr 独享所有权,避免了std::auto_ptr 恼人的几个问题。

我们还是从代码开始分析:

void TestScopedPtr() {

boost::scoped_ptr<Simple> my_memory(new Simple(1));

if (my_memory.get()) {

my_memory->PrintSomething();

my_memory.get()->info_extend = "Addition";

my_memory->PrintSomething();

(*my_memory).info_extend += " other";

my_memory->PrintSomething();

my_memory.release(); // 编译 error: scoped_ptr 没有 release 函数

std::auto_ptr<Simple> my_memory2;

my_memory2 = my_memory; // 编译 error: scoped_ptr 没有重载 operator=,不会导致所有权转移

}

}

首先,我们可以看到,boost::scoped_ptr 也可以像 auto_ptr 一样正常使用。但其没有release() 函数,不会导致先前的内存泄露问题。其次,由于 boost::scoped_ptr 是独享所有权的,所以明确拒绝用户写“my_memory2 = my_memory”之类的语句,可以缓解 std::auto_ptr 几个恼人的问题。

由于 boost::scoped_ptr 独享所有权,当我们真真需要复制智能指针时,需求便满足不了了,如此我们再引入一个智能指针,专门用于处理复制,参数传递的情况,这便是如下的boost::shared_ptr。

4、boost::shared_ptr

boost::shared_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。在上面我们看到 boost::scoped_ptr 独享所有权,不允许赋值、拷贝,boost::shared_ptr 是专门用于共享所有权的,由于要共享所有权,其在内部使用了引用计数。boost::shared_ptr 也是用于管理单个堆内存对象的。

我们还是从代码开始分析:

void TestSharedPtr(boost::shared_ptr<Simple> memory) { // 注意:无需使用 reference (或 const reference)

memory->PrintSomething();

std::cout << "TestSharedPtr UseCount: " << memory.use_count() << std::endl;

}

void TestSharedPtr2() {

boost::shared_ptr<Simple> my_memory(new Simple(1));

if (my_memory.get()) {

my_memory->PrintSomething();

my_memory.get()->info_extend = "Addition";

my_memory->PrintSomething();

(*my_memory).info_extend += " other";

my_memory->PrintSomething();

}

std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl;

TestSharedPtr(my_memory);

std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl;

//my_memory.release();// 编译 error: 同样,shared_ptr 也没有 release 函数

}

执行结果为:

Simple: 1

PrintSomething:

PrintSomething: Addition

PrintSomething: Addition other

TestSharedPtr2 UseCount: 1

PrintSomething: Addition other

TestSharedPtr UseCount: 2

TestSharedPtr2 UseCount: 1

~Simple: 1

boost::shared_ptr 也可以很方便的使用。并且没有 release() 函数。关键的一点,boost::shared_ptr 内部维护了一个引用计数,由此可以支持复制、参数传递等。boost::shared_ptr 提供了一个函数 use_count() ,此函数返回 boost::shared_ptr 内部的引用计数。查看执行结果,我们可以看到在 TestSharedPtr2 函数中,引用计数为 1,传递参数后(此处进行了一次复制),在函数TestSharedPtr 内部,引用计数为2,在 TestSharedPtr 返回后,引用计数又降低为 1。当我们需要使用一个共享对象的时候,boost::shared_ptr 是再好不过的了。

在此,我们已经看完单个对象的智能指针管理,关于智能指针管理数组,我们接下来讲到。

5、boost::scoped_array

boost::scoped_array 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

boost::scoped_array 便是用于管理动态数组的。跟 boost::scoped_ptr 一样,也是独享所有权的。

我们还是从代码开始分析:

void TestScopedArray() {

boost::scoped_array<Simple> my_memory(new Simple[2]); // 使用内存数组来初始化

if (my_memory.get()) {

my_memory[0].PrintSomething();

my_memory.get()[0].info_extend = "Addition";

my_memory[0].PrintSomething();

(*my_memory)[0].info_extend += " other"; // 编译 error,scoped_ptr 没有重载operator*

my_memory[0].release(); // 同上,没有 release 函数

boost::scoped_array<Simple> my_memory2;

my_memory2 = my_memory; // 编译 error,同上,没有重载 operator=

}

}

boost::scoped_array 的使用跟 boost::scoped_ptr 差不多,不支持复制,并且初始化的时候需要使用动态数组。另外,boost::scoped_array 没有重载“operator*”,其实这并无大碍,一般情况下,我们使用 get() 函数更明确些。

下面肯定应该讲 boost::shared_array 了,一个用引用计数解决复制、参数传递的智能指针类。

6、boost::shared_array

boost::shared_array 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

由于 boost::scoped_array 独享所有权,显然在很多情况下(参数传递、对象赋值等)不满足需求,由此我们引入 boost::shared_array。跟 boost::shared_ptr 一样,内部使用了引用计数。

我们还是从代码开始分析:

void TestSharedArray(boost::shared_array<Simple> memory) { // 注意:无需使用 reference (或const reference)

std::cout << "TestSharedArray UseCount: " << memory.use_count() << std::endl;

}

void TestSharedArray2() {

boost::shared_array<Simple> my_memory(new Simple[2]);

if (my_memory.get()) {

my_memory[0].PrintSomething();

my_memory.get()[0].info_extend = "Addition 00";

my_memory[0].PrintSomething();

my_memory[1].PrintSomething();

my_memory.get()[1].info_extend = "Addition 11";

my_memory[1].PrintSomething();

//(*my_memory)[0].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator*

}

std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl;

TestSharedArray(my_memory);

std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl;

}

执行结果为:

Simple: 0

Simple: 0

PrintSomething:

PrintSomething: Addition 00

PrintSomething:

PrintSomething: Addition 11

TestSharedArray2 UseCount: 1

TestSharedArray UseCount: 2

TestSharedArray2 UseCount: 1

~Simple: 0

~Simple: 0

跟 boost::shared_ptr 一样,使用了引用计数,可以复制,通过参数来传递。

至此,我们讲过的智能指针有std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array。这几个智能指针已经基本够我们使用了,90% 的使用过标准智能指针的代码就这 5 种。可如下还有两种智能指针,它们肯定有用,但有什么用处呢,一起看看吧。

7、boost::weak_ptr

boost::weak_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

在讲 boost::weak_ptr 之前,让我们先回顾一下前面讲解的内容。似乎boost::scoped_ptr、boost::shared_ptr 这两个智能指针就可以解决所有单个对象内存的管理了,这儿还多出一个 boost::weak_ptr,是否还有某些情况我们没纳入考虑呢?

回答:有。首先 boost::weak_ptr 是专门为 boost::shared_ptr 而准备的。有时候,我们只关心能否使用对象,并不关心内部的引用计数。boost::weak_ptr 是 boost::shared_ptr 的观察者(Observer)对象,观察者意味着 boost::weak_ptr 只对 boost::shared_ptr 进行引用,而不改变其引用计数,当被观察的 boost::shared_ptr 失效后,相应的 boost::weak_ptr 也相应失效。

我们还是从代码开始分析:

void TestWeakPtr() {

boost::weak_ptr<Simple> my_memory_weak;

boost::shared_ptr<Simple> my_memory(new Simple(1));

std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl;

my_memory_weak = my_memory;

std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl;

}

执行结果为:

Simple: 1

TestWeakPtr boost::shared_ptr UseCount: 1

TestWeakPtr boost::shared_ptr UseCount: 1

~Simple: 1

我们看到,尽管被赋值了,内部的引用计数并没有什么变化,当然,读者也可以试试传递参数等其他情况。

现在要说的问题是,boost::weak_ptr 到底有什么作用呢?从上面那个例子看来,似乎没有任何作用,其实 boost::weak_ptr 主要用在软件架构设计中,可以在基类(此处的基类并非抽象基类,而是指继承于抽象基类的虚基类)中定义一个 boost::weak_ptr,用于指向子类的boost::shared_ptr,这样基类仅仅观察自己的 boost::weak_ptr 是否为空就知道子类有没对自己赋值了,而不用影响子类 boost::shared_ptr 的引用计数,用以降低复杂度,更好的管理对象。

8、boost::intrusive_ptr

boost::intrusive_ptr属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

讲完如上 6 种智能指针后,对于一般程序来说 C++ 堆内存管理就够用了,现在有多了一种boost::intrusive_ptr,这是一种插入式的智能指针,内部不含有引用计数,需要程序员自己加入引用计数,不然编译不过(⊙﹏⊙b汗)。个人感觉这个智能指针没太大用处,至少我没用过。有兴趣的朋友自己研究一下源代码哦J。

三、总结

如上讲了这么多智能指针,有必要对这些智能指针做个总结:

1、在可以使用 boost 库的场合下,拒绝使用 std::auto_ptr,因为其不仅不符合 C++ 编程思想,而且极容易出错[2]。

2、在确定对象无需共享的情况下,使用 boost::scoped_ptr(当然动态数组使用boost::scoped_array)。

3、在对象需要共享的情况下,使用 boost::shared_ptr(当然动态数组使用boost::shared_array)。

4、在需要访问 boost::shared_ptr 对象,而又不想改变其引用计数的情况下,使用boost::weak_ptr,一般常用于软件框架设计中。

5、最后一点,也是要求最苛刻一点:在你的代码中,不要出现 delete 关键字(或 C 语言的free 函数),因为可以用智能指针去管理。

---------------------------------------

[1]参见《effective C++(3rd)》,条款06 。

[2]关于 boost 库的使用,可本博客另外一篇文章:《在 Windows 中编译 boost1.42.0》。

[3]读者应该看到了,在我所有的名字前,都加了命名空间标识符std::(或boost::),这不是我不想写 using namespace XXX 之类的语句,在大型项目中,有可能会用到 N 个第三方库,如果把命名空间全放出来,命名污染(Naming conflicts)问题很难避免,到时要改回来是极端麻烦的事情。当然,如果你只是写 Demo,可以例外。


内容概要:本文全面介绍了数据流图(DFD)的概念、构成元素及其重要性。数据流图是从数据传递和加工的角度,以图形方式表达系统逻辑功能、数据流向和变换过程的工具。文章详细解释了数据流图的四个基本元素:数据流、加工、数据存储和外部实体,并通过实例说明了这些元素在实际场景中的应用。文中强调了数据流图在软件开发需求分析和业务流程优化中的关键作用,通过绘制顶层、中层和底层数据流图,逐步细化系统功能,确保数据流向和处理逻辑的清晰性。此外,文章还指出了常见绘制误区及解决方法,并以在线购物系统为例进行了实战分析,展示了从需求分析到数据流图绘制的全过程。 适合人群:软件工程师、业务分析师、系统设计师以及对系统分析与设计感兴趣的初学者。 使用场景及目标:①帮助开发团队在需求分析阶段清晰展示数据流动和处理过程,避免理解偏差;②辅助企业梳理和优化业务流程,识别效率低下的环节,提升运营效率;③为系统设计和开发提供详细的逻辑框架,确保各模块的功能明确,减少开发错误。 阅读建议:本文内容详实,涵盖了从理论到实践的各个方面。建议读者在学习过程中结合实际项目背景,逐步掌握数据流图的绘制技巧,并通过反复练习和优化,加深对系统分析与设计的理解。
资源下载链接为: https://pan.quark.cn/s/5c50e6120579 《CoffeeTime_0.99.rar:主板BIOS修改工具详述》 在计算机硬件领域,BIOS(基本输入输出系统)是计算机启动时最先加载的软件,它负责初始化硬件设备,并为操作系统提供基本的交互功能。不过,随着处理器技术的持续进步,部分主板可能无法原生支持更新的CPU型号。为解决这一问题,一些技术爱好者和专业人士会通过修改主板BIOS,也就是俗称的“魔改”,来提升其兼容性。本文将深入剖析名为“CoffeeTime_0.99.rar”的工具,它是一款专门用于主板BIOS修改,以实现对第6、7、8、9代英特尔CPU支持的工具。 我们先来看“CoffeeTime.exe”,这是该工具的主程序文件。通常情况下,它会配备一套直观易用的用户界面,方便用户对BIOS进行修改操作。不过,在使用该工具之前,用户必须具备一定的电脑硬件知识,因为一旦操作失误,就可能导致系统运行不稳定,甚至无法启动。对于初学者而言,谨慎操作至关重要,否则可能会造成不可挽回的损失。 “readme.txt”是软件包中常见的文档,一般会包含使用指南、注意事项以及开发者提供的其他重要信息。在使用CoffeeTime之前,用户务必要仔细阅读该文件,因为面可能包含了如何正确运行程序、避免错误操作以及解压后具体步骤等关键内容。 “bin”和“data”是两个文件夹,它们可能包含了用于BIOS修改的各种二进制文件和数据。“bin”文件夹通常会包含特定版本的BIOS固件或用于修改的工具,而“data”文件夹则可能包含更新CPU微码、识别信息等必要的数据文件。在进行BIOS修改的过程中,这些文件会被程序调用,从而实现对原有BIOS的扩展或修正。 BIOS的修改过程一般包含以下步骤:首先,备份原始BIOS,这是在进行任何修改前的必要步骤,以便
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值