第一题、338. Counting Bits
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
方法一、i&(i-1)可以消除最后一个1的特性,代码如下:
vector<int> countBits(int num) {
vector<int> ret(num+1,0);
for(int i = 1; i <= num; i++)
ret[i] = ret[i&(i-1)] + 1; //由于i&(i-1)可以消除最后一个1,所以可以这样做
return ret;
}
方法二、普通的做法:
vector<int> countBits(int num) {
vector<int> total(num+1);
for(int i=0;i<=num;i++)
{
total[i]=0;
int j=i;
while(j)
{
j&=(j-1);
total[i]++;
}
}
return total;
}
第二题、191. Number of 1 Bits
Write a function that takes an unsigned integer and returns the number of ’1’ bits it has (also known as the Hamming weight).
For example, the 32-bit integer ’11’ has binary representation 00000000000000000000000000001011, so the function should return 3
题意:统计一个整数的32位的二进制中1的个数,和上题的思路类似
int hammingWeight(uint32_t n) {
int count = 0;
while(n){
n &= (n -1);
count++;
}
return count;
}