Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
采用动态规划的思想:
采用由下到上的思想(这样最后只需要取出dp[0][0]就是答案),本层每个结点的结果根据下面一行的路基累计和而计算,要么取左边的,要么取右边的,两者取最小的即可。
int minimumTotal(vector<vector<int>>& triangle) {
for(int i = triangle.size() - 2; i >= 0 ; i--){
for(int j = 0; j <= i; j++){
triangle[i][j] = min(triangle[i+1][j],triangle[i+1][j+1]) + triangle[i][j];
}
}
return triangle[0][0];
}