120. Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
采用动态规划的思想:
采用由下到上的思想(这样最后只需要取出dp[0][0]就是答案),本层每个结点的结果根据下面一行的路基累计和而计算,要么取左边的,要么取右边的,两者取最小的即可。

int minimumTotal(vector<vector<int>>& triangle) {
        for(int i = triangle.size() - 2; i >= 0 ; i--){
            for(int j = 0; j <= i; j++){
                triangle[i][j] = min(triangle[i+1][j],triangle[i+1][j+1]) + triangle[i][j];
            }
        }

        return triangle[0][0];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值