文本分类(三) | (5) 训练、验证以及测试

完整项目

最后,介绍一下模型的训练、验证以及测试流程。

目录

1. 训练

2. 验证

3. 测试


1. 训练

def train(config, model, train_iter, dev_iter, test_iter):
    start_time = time.time()
    model.train()#训练模式
    param_optimizer = list(model.named_parameters())
    #下列参数 不进行正则化(权重衰减)
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
    # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    #优化器
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config.learning_rate,
                         warmup=0.05,
                         t_total=len(train_iter) * config.num_epochs)
    total_batch = 0  # 记录进行到多少batch
    dev_best_loss = float('inf')#跟踪验证集最小的
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值