LG P3710 方方方的数据结构 Solution

Description

有一个长度为 nnn 的序列 aaa,初始全为 000,执行 qqq 次操作分四种:

  • 1 l r x:对每个 l≤i≤rl\le i\le rlir 执行 ai←ai+xa_i\gets a_i+xaiai+x.
  • 2 l r x:对每个 l≤i≤rl\le i\le rlir 执行 ai←ai×xa_i\gets a_i\times xaiai×x.
  • 3 i:求 ai mod 998244353a_i\bmod 998244353aimod998244353.
  • 4 k:撤销第 kkk 次操作,保证为修改操作.

Limitations

1≤n,q≤1.5×1051\le n,q\le 1.5\times 10^51n,q1.5×105
1≤l≤r≤n1\le l\le r\le n1lrn
1≤i≤n,1≤k≤q1\le i\le n,1\le k\le q1in,1kq
1≤x≤10737418231\le x\le 10737418231x1073741823
4.5s,125MB4.5\text{s},125\text{MB}4.5s,125MB
保证数据随机.

Solution

假如没有 4 操作就是板子.
但有了 4 操作后,我们不好计算撤销操作对 aaa 的影响.

将操作全部离线下来,那么可以确定每个修改操作存在的时间范围.
考虑加上时间维,构成二维平面,那么每次修改就是矩形加/乘,查询就是单点查.

由于这个平面很大,需要用 KDT 维护,并将标记永久化.
时间复杂度 O(qn)O(q\sqrt n)O(qn),不需要数据随机.

Code

5.87KB,2.76s,7.43MB  (c++20 with o2)5.87\text{KB},2.76\text{s},7.43\text{MB}\;\texttt{(c++20 with o2)}5.87KB,2.76s,7.43MB(c++20 with o2)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

constexpr int mod = 998244353;

class KDT {
private:
    struct Node {
        int x, y;
        i64 val;
        i64 add, mul;
        int xmin, xmax, ymin, ymax;
        Node *ls, *rs;
        Node(int x, int y) : x(x), y(y), val(0), add(0), mul(1),
                            xmin(x), xmax(x), ymin(y), ymax(y),
                            ls(nullptr), rs(nullptr) {}
    };

    Node* rt;

    void apply_add(Node* u, i64 v) {
        if (!u) return;
        u->val = (u->val + v) % mod;
        u->add = (u->add + v) % mod;
    }

    void apply_mul(Node* u, i64 v) {
        if (!u) return;
        u->val = (u->val * v) % mod;
        u->add = (u->add * v) % mod;
        u->mul = (u->mul * v) % mod;
    }

    void pushdown(Node* u) {
        if (!u) return;
        if (u->mul != 1) {
            apply_mul(u->ls, u->mul);
            apply_mul(u->rs, u->mul);
            u->mul = 1;
        }
        if (u->add != 0) {
            apply_add(u->ls, u->add);
            apply_add(u->rs, u->add);
            u->add = 0;
        }
    }

    void pushup(Node* u) {
        if (!u) return;
        u->xmin = u->xmax = u->x;
        u->ymin = u->ymax = u->y;
        if (u->ls) {
            u->xmin = min(u->xmin, u->ls->xmin);
            u->xmax = max(u->xmax, u->ls->xmax);
            u->ymin = min(u->ymin, u->ls->ymin);
            u->ymax = max(u->ymax, u->ls->ymax);
        }
        if (u->rs) {
            u->xmin = min(u->xmin, u->rs->xmin);
            u->xmax = max(u->xmax, u->rs->xmax);
            u->ymin = min(u->ymin, u->rs->ymin);
            u->ymax = max(u->ymax, u->rs->ymax);
        }
    }

    Node* build(vector<Node*>& nodes, int l, int r, int dep) {
        if (l >= r) return nullptr;
        int mid = (l + r) / 2;
        if (dep % 2 == 0) {
            nth_element(nodes.begin() + l, nodes.begin() + mid, nodes.begin() + r, [](Node* a, Node* b) { return a->x < b->x; });
        } else {
            nth_element(nodes.begin() + l, nodes.begin() + mid, nodes.begin() + r, [](Node* a, Node* b) { return a->y < b->y; });
        }
        
        Node* u = nodes[mid];
        u->ls = build(nodes, l, mid, dep + 1);
        u->rs = build(nodes, mid + 1, r, dep + 1);
        pushup(u);
        return u;
    }

    void rect_add(Node* u, int x1, int y1, int x2, int y2, i64 v) {
        if (!u) return;
        if (u->xmax < x1 || u->xmin > x2 || u->ymax < y1 || u->ymin > y2) return;
        if (x1 <= u->xmin && u->xmax <= x2 && y1 <= u->ymin && u->ymax <= y2) {
            apply_add(u, v);
            return;
        }
        
        pushdown(u);
        if (x1 <= u->x && u->x <= x2 && y1 <= u->y && u->y <= y2) u->val = (u->val + v) % mod;
        rect_add(u->ls, x1, y1, x2, y2, v);
        rect_add(u->rs, x1, y1, x2, y2, v);
    }

    void rect_mul(Node* u, int x1, int y1, int x2, int y2, i64 v) {
        if (!u) return;
        if (u->xmax < x1 || u->xmin > x2 || u->ymax < y1 || u->ymin > y2) return;
        if (x1 <= u->xmin && u->xmax <= x2 && y1 <= u->ymin && u->ymax <= y2) {
            apply_mul(u, v);
            return;
    	}
    	
        pushdown(u);
        if (x1 <= u->x && u->x <= x2 && y1 <= u->y && u->y <= y2) u->val = u->val * v % mod;
        rect_mul(u->ls, x1, y1, x2, y2, v);
        rect_mul(u->rs, x1, y1, x2, y2, v);
    }

    i64 point_query(Node* u, int x, int y, i64 tadd = 0, i64 tmul = 1) {
        if (!u) return 0;
        if (u->x == x && u->y == y) return (u->val * tmul + tadd) % mod;
        
        pushdown(u);
        bool go_left;
        if (u->ls && u->ls->xmin <= x && x <= u->ls->xmax && u->ls->ymin <= y && y <= u->ls->ymax) go_left = true;
        else if (u->rs && u->rs->xmin <= x && x <= u->rs->xmax && u->rs->ymin <= y && y <= u->rs->ymax) go_left = false;
        else return 0;
        
        if (go_left) return point_query(u->ls, x, y, (tadd + u->add * tmul) % mod, tmul * u->mul % mod);
        else return point_query(u->rs, x, y, (tadd + u->add * tmul) % mod, tmul * u->mul % mod);
    }

public:
    KDT() : rt(nullptr) {}

    void rect_add(int x1, int y1, int x2, int y2, i64 v) {
        rect_add(rt, x1, y1, x2, y2, v);
    }

    void rect_mul(int x1, int y1, int x2, int y2, i64 v) {
        rect_mul(rt, x1, y1, x2, y2, v);
    }

    i64 point_query(int x, int y) {
        return point_query(rt, x, y);
    }

    void build(const vector<pair<int, int>>& points) {
        vector<Node*> nodes;
        for (auto& p : points) {
            nodes.push_back(new Node(p.first, p.second));
        }
        rt = build(nodes, 0, nodes.size(), 0);
    }
};

struct modify {
	int x1, y1, x2, y2, t, v;
	inline modify() : modify(0, 0, 0, 0, 0, 0) {}
	inline modify(int x1, int y1, int x2, int y2, int t, int v)
	    : x1(x1), y1(y1), x2(x2), y2(y2), t(t), v(v) {}
};

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, q;
	cin >> n >> q;
	
	KDT kdt;
	vector<pair<int, int>> pts;
	vector<modify> mdf(q);
	
	for (int i = 0, op, l, r, k; i < q; i++) {
		cin >> op;
		if (op <= 2) {
			cin >> l >> r >> k;
			l--, r--;
			mdf[i] = {l, i, r, q - 1, op, k};
		}
		if (op == 3) {
			cin >> k, k--;
			pts.emplace_back(k, i);
		}
		if (op == 4) {
			cin >> k, k--;
			mdf[k].y2 = i;
		}
	}
	
	kdt.build(pts);
	for (int i = 0; i < q; i++) {
		if (mdf[i].t == 1) kdt.rect_add(mdf[i].x1, mdf[i].y1, mdf[i].x2, mdf[i].y2, mdf[i].v);
		if (mdf[i].t == 2) kdt.rect_mul(mdf[i].x1, mdf[i].y1, mdf[i].x2, mdf[i].y2, mdf[i].v);
	}
	
	for (int i = 0; i < pts.size(); i++)
	    cout << kdt.point_query(pts[i].first, pts[i].second) << '\n';

	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值