Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对每个 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← a i + v a_i \gets a_i+v ai←ai+v.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 max ( 0 , max [ u , v ] ∈ [ l , r ] ∑ i = u v a i ) \max(0,\max\limits_{[u,v]\in [l,r]}\sum\limits_{i=u}^v a_i) max(0,[u,v]∈[l,r]maxi=u∑vai).
Limitations
1
≤
n
,
m
≤
4
×
10
5
1 \le n,m \le 4\times 10^5
1≤n,m≤4×105
1
≤
l
≤
r
≤
n
1 \le l \le r \le n
1≤l≤r≤n
∣
a
i
∣
≤
10
9
|a_i| \le 10^9
∣ai∣≤109
1
≤
v
≤
10
6
\textcolor{red}{1 \le v \le 10^6}
1≤v≤106
1.8
s
,
256
MB
1.8\text{s},256\text{MB}
1.8s,256MB
Solution
求最大子段和,显然要维护区间和
sum
\textit{sum}
sum,最大前缀、后缀、子段和
lmax
,
rmax
,
tmax
\textit{lmax},\textit{rmax},\textit{tmax}
lmax,rmax,tmax.
考虑区间加
v
v
v 对这些值的影响:
如果选择的区间没有变,则答案要加上
k
v
kv
kv,其中
k
k
k 为该区间的长度.
考虑把上述四个值变成一次函数
y
=
k
x
+
b
y=kx+b
y=kx+b,若选择区间不变则
x
x
x 加上
v
v
v.
但选择的区间不是一成不变的,为了判断,我们需要维护阈值
L
L
L,表示若
x
≥
L
x \ge L
x≥L 则四个值选择的区间至少会变一个.
pushup 时
+
+
+ 操作为一次函数相加,
max
\max
max 为函数在
x
=
0
x=0
x=0 时的比较.
L
L
L 取子节点的
L
L
L 以及
lmax
,
rmax
\textit{lmax},\textit{rmax}
lmax,rmax 两种方案,
tmax
\textit{tmax}
tmax 三种方案的函数交点取最小(若小于
0
0
0 或无交则变为
∞
\infty
∞).
每次修改就把 x x x 减去 v v v,若减后 x < 0 x < 0 x<0,则暴力遍历子树进行重构,若一棵子树的 x ≥ 0 x \ge 0 x≥0 就直接打标记而不进入.
上述即 KTT,时间复杂度约为
O
(
(
n
+
m
)
log
3
n
)
O((n+m)\log^3 n)
O((n+m)log3n),具体见 EI’s blog.
需要注意,上述方法建立在区间加正数这一基础上,否则反复重构会导致时间复杂度假掉.
Code
5.67
KB
,
4.7
s
,
71.69
MB
(in
total,
C++20
with
O2)
5.67\text{KB},4.7\text{s},71.69\text{MB}\;\texttt{(in total, C++20 with O2)}
5.67KB,4.7s,71.69MB(in total, C++20 with O2)
只给一部分.
constexpr i64 inf = 4e18;
struct line {
int k; i64 b;
inline line() : line(0, 0) {}
inline line(int _k, i64 _b): k(_k), b(_b) {}
inline void add(i64 v) { b += k * v; }
};
inline line operator+(const line& lhs, const line& rhs) {
return line(lhs.k + rhs.k, lhs.b + rhs.b);
}
inline pair<line, i64> _max(const line& a, const line& b) {
if (a.k < b.k || (a.k == b.k && a.b < b.b)) return _max(b, a);
if (a.b >= b.b) return make_pair(a, inf);
return make_pair(b, (b.b - a.b) / (a.k - b.k));
}
struct info {
line pre, suf, ans, sum;
i64 x;
inline info() {}
inline info(line pre, line suf, line ans, line sum, i64 x)
: pre(pre), suf(suf), ans(ans), sum(sum), x(x) {}
};
inline info operator+(const info& a, const info& b) {
i64 x0 = min(a.x, b.x);
line sum = a.sum + b.sum;
auto [pre, x1] = _max(a.pre, a.sum + b.pre);
auto [suf, x2] = _max(b.suf, a.suf + b.sum);
auto [tmp, x3] = _max(a.ans, b.ans);
auto [ans, x4] = _max(tmp, a.suf + b.pre);
return info(pre, suf, ans, sum, min({x0, x1, x2, x3, x4}));
}
inline void operator+=(info& a, i64 v) {
a.x -= v;
a.pre.add(v), a.suf.add(v);
a.sum.add(v), a.ans.add(v);
}
struct node {
int l, r;
info dat;
i64 tag;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct ktt {
vector<node> tr;
inline ktt() {}
inline ktt(const vector<i64>& a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
inline void pushup(int u, int mid) { tr[u].dat = tr[ls(mid)].dat + tr[rs(mid)].dat; }
inline void apply(int u, i64 v) { tr[u].tag += v, tr[u].dat += v; }
inline void pushdown(int u, int mid) {
if (tr[u].tag) {
apply(ls(mid), tr[u].tag);
apply(rs(mid), tr[u].tag);
tr[u].tag = 0;
}
}
inline void build(int u, int l, int r, const vector<i64>& a) {
tr[u].l = l, tr[u].r = r;
if (l == r) {
line f(1, a[l]);
tr[u].dat = info(f, f, f, f, inf);
return;
}
const int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
inline void defeat(int u, i64 v) {
const int mid = (tr[u].l + tr[u].r) >> 1;
if (v > tr[u].dat.x) {
defeat(ls(mid), tr[u].tag + v);
defeat(rs(mid), tr[u].tag + v);
tr[u].tag = 0;
pushup(u, mid);
}
else apply(u, v);
}
inline void update(int u, int l, int r, i64 v) {
if (l <= tr[u].l && tr[u].r <= r) return defeat(u, v);
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) update(ls(mid), l, r, v);
if (r > mid) update(rs(mid), l, r, v);
pushup(u, mid);
}
inline info query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].dat;
const int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (r <= mid) return query(ls(mid), l, r);
if (l > mid) return query(rs(mid), l, r);
return query(ls(mid), l, r) + query(rs(mid), l, r);
}
inline void range_add(int l, int r, i64 v) { update(0, l, r, v); }
inline i64 range_gss(int l, int r) { return max(query(0, l, r).ans.b, 0LL); }
};
989

被折叠的 条评论
为什么被折叠?



