A
题意:可以删除一些数,但不能改变其位置,并且1的右边不能有1,问最后最多剩下多少数
思路:很显然如果存在一个1那么右边不可能存在0,所以对1做一个后缀,从前向后考虑,每碰到一个1就判断不删掉这个1的最大值
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 1e5 + 10;
const int INF = 1e9 + 10;
int num[105];
int suf[105];
int main(){
int n; scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", num + i);
}
for(int i = n; i >= 1; --i) {
suf[i] = suf[i + 1] + (num[i] == 1 ? 1 : 0);
}
int maxn = 0;
int cnt = 0;
for(int i = 1; i <= n; ++i) {
if(num[i] == 1) {
maxn = max(maxn, cnt + suf[i]);
} else {
cnt++;
maxn = max(maxn, cnt);
}
}
printf("%d\n", maxn);
return 0;
}
B
题意:n个任务,每个任务有k个子任务,给出k个子任务完成需要的时间ti,你可以任意做子任务,每完成一个子任务得到1点,你每做一个任务的所有子任务会额外获得1点
问你在时间M内最多可以获得多少点
思路:直接枚举完成任务的个数,然后贪心即可
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 1e5 + 10;
const int INF = 1e9 + 10;
LL n, k, M;
LL t[qq];
LL Completly(LL num) {
LL cnt = 0;
for(int i = 1; i <= k; ++i) {
cnt += t[i];
}
cnt = cnt * num;
LL tmp = M - cnt;
if(tmp < 0) return 0;
LL ans = k * num + num;
for(int i = 1; i <= k; ++i) {
for(int j = num + 1; j <= n; ++j) {
if(tmp - t[i] >= 0) {
tmp -= t[i];
ans++;
if(i == k) ans++;
}
}
}
return ans;
}
int main(){
scanf("%lld%lld%lld", &n, &k, &M);
for(int i = 1; i <= k; ++i) {
scanf("%lld", t + i);
}
sort(t + 1, t + 1 + k);
LL maxn = 0;
for(int i = 0; i <= n; ++i) {
maxn = max(maxn, Completly((LL)i));
}
printf("%d\n", maxn);
return 0;
}
C
题意:求出[0,d0) - [d0,d1) + [d1,d2)- [d2,n)的最大值,其中d0 <= d1 <= d2,输出d0, d1, d2
思路:先枚举d1和d2,dp2[i]代表d1 == i 时[d1,d2)- [d2,n)的最大值,并且d2的位置用di[i]记录,然后枚举d0,d1即可
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 1e6 + 10;
const int INF = 1e9 + 10;
int num[qq], n;
LL pre[qq];
LL dp2[qq], id[qq];
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%lld", num + i);
pre[i] = num[i];
}
for(int i = 1; i <= n + 1; ++i) {
pre[i] += pre[i - 1];
}
for(int i = n + 1; i >= 1; --i) {
dp2[i] = -(pre[n + 1] - pre[i - 1]);
id[i] = i;
for(int j = i; j <= n + 1; ++j) {
if(pre[j - 1] - pre[i - 1] - (pre[n + 1] - pre[j - 1]) > dp2[i]) {
dp2[i] = pre[j - 1] - pre[i - 1] - (pre[n + 1] - pre[j - 1]);
id[i] = j;
}
}
}
int a, b, c;
LL maxn = -1e18;
for(int i = 1; i <= n + 1; ++i) {
for(int j = i; j <= n + 1; ++j) {
if(pre[i - 1] - (pre[j - 1] - pre[i - 1]) + dp2[j] > maxn) {
maxn = pre[i - 1] - (pre[j - 1] - pre[i - 1]) + dp2[j];
a = i, b = j, c = id[j];
}
}
}
printf("%d %d %d\n", a - 1, b - 1, c - 1);
return 0;
}
D
题意:n × m的矩阵,然后给出一个k,和q,然后给出q,接下来q行给出x,y,t,表示点x,y在时间t坏掉了,如果存在一个k × k的矩阵都换掉了,则整个矩阵坏掉了,求最小时间
思路:二分时间,然后用矩阵前缀和判断即可
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
using namespace std;
#define LL long long
#define pb push_back
#define mk make_pair
#define pill pair<int, int>
#define mst(a, b) memset(a, b, sizeof a)
#define REP(i, x, n) for(int i = x; i <= n; ++i)
const int MOD = 1e9 + 7;
const int qq = 500 + 10;
const int INF = 1e9 + 10;
int n, m, k, q;
int x[qq * qq], y[qq * qq], t[qq * qq];
int dp[qq][qq];
bool Judge(int tm) {
for(int i = 0; i <= n; ++i) {
for(int j = 0; j <= m; ++j) {
dp[i][j] = 0;
}
}
for(int i = 0; i < q; ++i) {
if(t[i] <= tm) {
dp[x[i]][y[i]] = 1;
}
}
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= m; ++j) {
dp[i][j] += dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1];
}
}
for(int i = 1; i + k - 1 <= n; ++i) {
for(int j = 1; j + k - 1 <= m; ++j) {
if(dp[i + k - 1][j + k - 1] - dp[i - 1][j + k - 1] - dp[i + k - 1][j - 1] + dp[i - 1][j - 1] == k * k) {
return true;
}
}
}
return false;
}
int main(){
scanf("%d%d%d%d", &n, &m, &k, &q);
for(int i = 0; i < q; ++i) {
scanf("%d%d%d", x + i, y + i, t + i);
}
int l = 0, r = 1e9 + 1;
int ans = -1;
while(l <= r) {
int mid = (l + r) >> 1;
if(Judge(mid)) {
r = mid - 1;
ans = mid;
} else {
l = mid + 1;
}
}
printf("%d\n", ans);
return 0;
}