SRM 664 hard BearSorts题解搬运

本文深入探讨了BearSort问题中概率的计算方法,通过分析MergeSort的比较次数来确定不同序列出现的概率。文中介绍了一个用于计算特定前缀下所有可能序列及其对应概率的高效算法,并详细解释了其实现细节。

Div1 Hard: BearSorts

First, we must understand what is probability of getting some sequence. It is equal to 0.5kwhere k is number of comparisons made by mergesort to get this sequence. To see why, you can check out Div2 Hard editorial. From now on, calculating/specified/given probability will mean calculating/specified/given number of comparisons. Fortunately, we don’t have to care about precision issues because we can keep probabilities as integers. And we will use a fact that mergesort does at most nlogn comparisons (otherwise, mergesort would have bigger complexity).

We are given permutation P and asked to count permutations with greater probability and those lexicographically smaller with the same probability. To do second part (btw. it will do first part too), we need a function forPrefix(pref, probability) which calculates number of permutations starting with specified prefix and probability. It turns out, that to make whole solution efficient, it’s better to have function forPrefix(pref) which calculates number of permutations for every possible probability. If you don’t see how to use this function to solve a task, check it in code below. Here we will focus on writing forPrefix(pref) function which will be called O(N2) times. We will write this function in O(N2log2N) to get total complexity O(N4log2N).

Mergesort with random LESS() returns permutation with prefix pref iff the following is true. If at least one of compared numbers a,b is in pref, then LESS(a,b) returns specified value, not leading to contradiction. If only a is in pref, it returns true. If only b is in pref, false. If both a and b are in pref, returned value must depend on “a is before b in pref”. Otherwise, it could return any value.

Function forPrefix(pref) will run mergesort simulation. In every recursive call of mergesort we merge two arrays, sorted previously (recursively). These two arrays are guaranteed to have all elements from pref as their prefixes (let’s call them special prefixes). After merging we want to again produce array with all elements from pref before other elements. First, we merge special prefixes in one way, specified by order of numbers in pref. Then we must merge other elements in every possible way.

When merging, one array will run out of numbers first and then we get some skipped suffix of the other array. In true mergesort such a suffix contains numbers bigger than all numbers in the other array. Let’s say we both arrays have sizes n1 and n2 and special prefixes p1 and p2. Let’s say we skip suffix of size x in first array. Then there is C(n1p1x,n2p2) ways (binomial coefficient) to merge arrays (we need to fix order of elements from middles). And we have n1+n2x comparisons. For both arrays we should iterate over size x of skipped suffix.

We can treat every resursive call of mergesort separately, because order of elements in halves doesn’t affect merging them. Every call produces some array of numbers of ways to achieve some probabilities, in code below I keep it globally in vector RES. We must multiply all those arrays like in FFT but we can do it slower. Total size of those arrays is limited by total number of comparisons which is O(NlogN), so indeed we can do it with brute force with total complexity O(N2log2N).

About implementation below. RES is result of multiplied arrays of numbers of ways to achieve probabilities. consider(vector) adds something to RES.

#include<bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i = (a); i ≤ (b); ++i)
typedef long long ll;
const int mod = 1e9 + 7;

vector<int> RES;
void consider (vector<int> w) { // equivalent to FFT
    assert(w.back() > 0 && w[0] == 0);
    int memo_size = (int) RES.size();
    RES.resize(memo_size + (int) w.size() - 1, 0);
    for(int i = memo_size - 1; i ≥ 0; --i) {
        FOR(j, 0, (int) w.size() - 1)
            RES[i+j] = (RES[i+j] + (ll) RES[i] * w[j]) % mod;
        RES[i] = 0;
    }
}

const int nax = 105;
int binom[nax][nax];
bool smaller[nax][nax];

void mergeSort(int a, int d) { // numbers in [a, d], inclusive
    if(a == d) return;
    int n = d-a+1;
    int c = a+n/2;
    int b = c-1;
    mergeSort(a, b);
    mergeSort(c, d);
    vector<int> L, R;
    FOR(i,a,b) L.push_back(i);
    FOR(i,c,d) R.push_back(i);
    sort(L.begin(), L.end(), [](int a, int b){return smaller[a][b];});
    sort(R.begin(), R.end(), [](int a, int b){return smaller[a][b];});
    int iL = 0, iR = 0;
    int r = 0;
    while(iL < (int)L.size() && iR < (int)R.size()
            && (smaller[L[iL]][R[iR]] || smaller[R[iR]][L[iL]])) {
        ++r;
        if(smaller[L[iL]][R[iR]]) ++iL;
        else ++iR;
    }
    if(iL ≥ (int)L.size() || iR ≥ (int)R.size()) {
        vector<int> w(r+1, 0);
        w[r] = 1;
        consider(w);
        return;
    }
    vector<int> w;
    int n1 = (int)L.size() - iL, n2 = (int)R.size() - iR;
    FOR(repeat, 0, 1) {
        // let's say we'll run out of numbers in L, i.e. the biggest number is in R
        // let's say there are x numbers in R bigger than everything in L
        FOR(x, 1, n2) {
            int one = n1-1; // everything but the biggest one
            int two = n2 - x;
            while((int)w.size() ≤ n-x) w.push_back(0);
            w[n-x] += binom[one+two][one];
        }
        swap(n1, n2); // to avoid copy-paste
    }
    consider(w);
}

// for given prefix (e.g. {2,5,1,6,0,0}) calculates
// global vector RES with number of ways to achieve each probability
void forPrefix(vector<int> pref) {
    int n = (int) pref.size();
    FOR(i,1,n) FOR(j,1,n) smaller[i][j] = false;
    FOR(i,0,n-1) if(pref[i]) {
        int a = pref[i];
        FOR(b,1,n) if(a != b && !smaller[b][a]) smaller[a][b] = true;
    }
    RES = vector<int>({1});
    mergeSort(1, n);
}

int index(vector<int> w) {
    FOR(i, 0, nax-1) binom[i][0] = 1;
    FOR(i,0,nax-1) FOR(j,1,i) binom[i][j] = (binom[i-1][j-1] + binom[i-1][j]) % mod;
    forPrefix(w);
    int me = (int) RES.size() - 1;
    int result = 1;
    // with greater probability (smaller number of comparisons)
    forPrefix(vector<int>((int)w.size(),0)); // empty prefix, vector with N zeros
    FOR(i,0,me-1) result = (result + RES[i]) % mod;
    // with the same probability, harder part
    for(int i = (int) w.size() - 1; i ≥ 0; --i) while(w[i]) {
        w[i]--;
        if(w[i] == 0) continue;
        bool ok = true;
        FOR(j,0,i-1) if(w[j] == w[i]) ok = false;
        if(!ok) continue;
        forPrefix(w);
        if(me < (int) RES.size()) result = (result + RES[me]) % mod;
    }
    return result;
}
独立储能的现货电能量与调频辅助服务市场出清协调机制(Matlab代码实现)内容概要:本文围绕“独立储能的现货电能量与调频辅助服务市场出清协调机制”展开,提出了一种基于Matlab代码实现的优化模型,旨在协调独立储能系统在电力现货市场与调频辅助服务市场中的联合出清问题。文中结合鲁棒优化、大M法和C&CG算法处理不确定性因素,构建了多市场耦合的双层或两阶段优化框架,实现了储能资源在能量市场和辅助服务市场间的最优分配。研究涵盖了市场出清机制设计、储能运行策略建模、不确定性建模及求解算法实现,并通过Matlab仿真验证了所提方法的有效性和经济性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事电力市场、储能调度相关工作的工程技术人员。; 使用场景及目标:①用于研究独立储能在多电力市场环境下的协同优化运行机制;②支撑电力市场机制设计、储能参与市场的竞价策略分析及政策仿真;③为学术论文复现、课题研究和技术开发提供可运行的代码参考。; 阅读建议:建议读者结合文档中提供的Matlab代码与算法原理同步学习,重点关注模型构建逻辑、不确定性处理方式及C&CG算法的具体实现步骤,宜在掌握基础优化理论的前提下进行深入研读与仿真调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值