机器学习:分类模型的评估指标

在机器学习中,评估分类模型的性能是至关重要的环节。选择合适的评估指标能够帮助我们全面了解模型的表现,尤其是在不同的数据分布和应用场景下。下面详细介绍一些常用的分类模型评估指标。

混淆矩阵(confusion matrix)是模式识别领域中一种常用的表达形式。它描绘样本数据的真实属性与识别类型之间的关系,是评价分类器性能的一种常用方法。

在这里插入图片描述
分类模型对测试集进行预测而得出的准确率并不能很好地反映模型的性能,为了有效判断一个预测模型的性能表现,需要结合真实值,计算出准确率,精确率,召回率,F1值等指标来衡量。

在这里插入图片描述
ROC图像同样是一种比较常见的用于数据挖掘的模型评估图,它指受试者工作特征曲线,在ROC中,真正率(TPR)沿y轴绘制,而假正率(FPR)显示在x轴上,ROC曲线下的面积值在1.0和0.5之间。在AUC>0.5的情况下,AUC越接近于1,说明诊断效果越好。AUC<0.5不符合真实情况,在实际中极少出现。
在这里插入图片描述

1. 准确率 (Accuracy)

准确率是最简单和直观的评估指标,表示分类正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rubyw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值