今天练了一下当年的背包问题,发现居然OJ还没过,赶紧刷一下。想到当年,每次做背包,就和军爷一起回忆
Eason的你的背包,从此变得好浪漫~~~~~
题目太经典了,分析就略过了。写个递推方程:
c[i,j]=max{c[i,j-1], c[i-1,j-w[i]+v[i]]} if BagWeight>=j>=w[i]
=c[i,j-1] if j<w[i]
c[1,j]={0 0<=j<w[i] v[1] w[1]<j<=BagWeight}
c[i,0]=0 i=1,2...n
coding过程中遇到一个问题,就是背包数n肯定是离散的,1,2,3.。n,然而背包重量BagWeight是离散的么,循环的step怎么设置,
后来仔细看了下,背包问题的包重和价值都是整数,所以其实是一个整数规划,是一类问题,不考虑小数,所以才可以BagWeight那一维
也是step为1递推。
还有一个重要的问题,好多次都忽视了,就是
初始化c[1,j]={0 if 0<=j<w[i] v[1] if w[1]<=j<=bagweight} (w[1] < = BagWeight)
这么写的前提是 w[1] < = BagWeight, 所以需要考虑另一种情况
c[1,j]={0 if 0<=j<=BagWeight} (w[1] > BagWeight)
递推出口尚且如此,自然递推通项式也是如此,所以一开始看到教材里第二层loop 是需要用个min函数其实是殊途同归的。
所以大家根据这里的分析是需要改递推方程的,要扩充成两种情况,小生此处就不扩了,一切尽在代码里,而且书上也没扩~~~
另外还有就是此题还要知道解的路径,思路是根据c[n][BagWeight] 递推回去,看等于哪个,就赋值为选或者不选该项。
此题有个刮三地方就是需要返回所有解中对应的二进制数最小的,我大概当时恰在这里了,现在想想其实就是
if c[i][j]=c[i-1][j] || c[i-1][j-w[i]+v[i]], select latter, as it will lead right more 1, and left more 0, which lead small binary number
等于的话优先走1的那条回溯路径,就对了这样前面就0了,是解中二进制数最小的。
附上代码:
Eason的你的背包,从此变得好浪漫~~~~~
题目太经典了,分析就略过了。写个递推方程:
c[i,j]=max{c[i,j-1], c[i-1,j-w[i]+v[i]]} if BagWeight>=j>=w[i]
=c[i,j-1] if j<w[i]
c[1,j]={0 0<=j<w[i] v[1] w[1]<j<=BagWeight}
c[i,0]=0 i=1,2...n
coding过程中遇到一个问题,就是背包数n肯定是离散的,1,2,3.。n,然而背包重量BagWeight是离散的么,循环的step怎么设置,
后来仔细看了下,背包问题的包重和价值都是整数,所以其实是一个整数规划,是一类问题,不考虑小数,所以才可以BagWeight那一维
也是step为1递推。
还有一个重要的问题,好多次都忽视了,就是
初始化c[1,j]={0 if 0<=j<w[i] v[1] if w[1]<=j<=bagweight} (w[1] < = BagWeight)
这么写的前提是 w[1] < = BagWeight, 所以需要考虑另一种情况
c[1,j]={0 if 0<=j<=BagWeight} (w[1] > BagWeight)
递推出口尚且如此,自然递推通项式也是如此,所以一开始看到教材里第二层loop 是需要用个min函数其实是殊途同归的。
所以大家根据这里的分析是需要改递推方程的,要扩充成两种情况,小生此处就不扩了,一切尽在代码里,而且书上也没扩~~~
另外还有就是此题还要知道解的路径,思路是根据c[n][BagWeight] 递推回去,看等于哪个,就赋值为选或者不选该项。
此题有个刮三地方就是需要返回所有解中对应的二进制数最小的,我大概当时恰在这里了,现在想想其实就是
if c[i][j]=c[i-1][j] || c[i-1][j-w[i]+v[i]], select latter, as it will lead right more 1, and left more 0, which lead small binary number
等于的话优先走1的那条回溯路径,就对了这样前面就0了,是解中二进制数最小的。
附上代码:
#include <iostream>
using namespace std;
int ZeroOneBag(int**c, bool* Select, int* Value, int* Weight, int n, int BagWeight)
{
//array start with 1, length is n+1
for(int i=1;i<=n;i++)
c[i][0]=0;
if(Weight[1]<=BagWeight)
{
for(int j=0;j<Weight[1];j++)//j<Weight[1] means can not add bag 1 into bag
c[1][j]=0;
for(int j=Weight[1];j<=BagWeight;j++)
c[1][j]=Value[1];
}
else
{
for(int j=0;j<=BagWeight;j++)//j<Weight[1] means can not add bag 1 into bag
c[1][j]=0;
}
for(int i=2;i<=n;i++)
{
if(Weight[i]<=BagWeight)
{
for(int j=0;j<Weight[i];j++)
c[i][j]=c[i-1][j];
for(int j=Weight[i];j<=BagWeight;j++)
c[i][j]=max(c[i-1][j],c[i-1][j-Weight[i]]+Value[i]);
}
else
{
for(int j=0;j<=BagWeight;j++)
c[i][j]=c[i-1][j];
}
}
int i=n, BagWeightTmp=BagWeight;
while(i>=2)
{
if(BagWeightTmp>=Weight[i])
{
if(c[i][BagWeightTmp]==(c[i-1][BagWeightTmp-Weight[i]]+Value[i]))//if c[i][j]=c[i-1][j] || c[i-1][j-w[i]+v[i]], select latter, as it will lead right more 1, and left more 0, which lead small binary number
{
Select[i]=true;
BagWeightTmp-=Weight[i];
}
else if(c[i][BagWeightTmp]==c[i-1][BagWeightTmp])
Select[i]=false;
else
;
}
else
{
Select[i]=false;
}
i--;
}
if(BagWeightTmp>=Weight[1])
Select[1]=true;
else
Select[1]=false;
return c[n][BagWeight];
}
int main()
{
int BagWeight, n;
int casei=1;
while(cin>>n>>BagWeight)
{
int BestBagValue;
int *Weight=new int[n+1]();
int *Value=new int[n+1]();
bool * Select=new bool[n+1]();
int **c=new int*[n+1];
for(int i=0;i<=n;i++)
c[i]=new int[BagWeight+1]();
for(int i=1;i<=n;i++)
cin>>Value[i];
for(int i=1;i<=n;i++)
cin>>Weight[i];
BestBagValue=ZeroOneBag(c,Select,Value,Weight,n,BagWeight);
cout<<"Case "<<casei<<endl;
casei++;
cout<<BestBagValue<<" ";
for(int i=1;i<=n;i++)
if(Select[i]==false)
cout<<"0";
else
cout<<"1";
cout<<endl;
for(int i=0;i<=n;i++)
delete[] c[i];
delete[] c;
delete[] Select;
delete[] Value;
delete[] Weight;
}
return 0;
}
恩 还碰到了一个申请c[][]的问题,居然申请了n*n得数组,于是申请的堆出了一个奇怪的bug,果然从coding开始每一句都要知道自己再干啥,记得之前好像在哪里看到过这句话。。。。而且一定要集中,我好像在这步开了小菜