# TODO - 计算模型的推理时间
def calcTime():
import numpy as np
from torchvision.models import resnet50
import torch
from torch.backends import cudnn
import tqdm
''' 导入你的模型
from module.amsnet import amsnet, anet, msnet, iresnet18, anet2, iresnet2, amsnet2
from module.resnet import resnet18, resnet34
from module.alexnet import AlexNet
from module.vgg import vgg
from module.lenet import LeNet
from module.googLenet import GoogLeNet
from module.ivgg import iVGG
'''
cudnn.benchmark = True
device = 'cuda:0'
model = anet().to(device)
repetitions = 1000
dummy_input = torch.rand(1, 3, 224, 224).to(device)
# 预热, GPU 平时可能为了节能而处于休眠状态, 因此需要预热
print('warm up ...\n')
with torch.no_grad():
for _ in range(100):
_ = model(dummy_input)
# synchronize 等待所有 GPU 任务处理完才返回 CPU 主线程
torch.cuda.synchronize()
# 设置用于测量时间的 cuda Event, 这是PyTorch 官方推荐的接口,理论上应该最靠谱
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
# 初始化一个时间容器
timings = np.zeros((repetitions, 1))
print('testing ...\n')
with torch.no_grad():
for rep in tqdm.tqdm(range(repetitions)):
starter.record()
_ = model(dummy_input)
ender.record()
torch.cuda.synchronize() # 等待GPU任务完成
curr_time = starter.elapsed_time(ender) # 从 starter 到 ender 之间用时,单位为毫秒
timings[rep] = curr_time
avg = timings.sum() / repetitions
print('\navg={}\n'.format(avg))
Pytorch 测试模型的推理速度
最新推荐文章于 2024-11-25 16:41:37 发布
该代码段展示了如何使用PyTorch测量不同模型(如AlexNet,VGG,ResNet等)在GPU上的推理时间。首先,它进行了预热以确保GPU达到最佳状态,然后利用cudaEvent进行精确的时间测量,以计算平均推理时间。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.7
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
2023





