UVa 437 The Tower of Babylon

题目:The Tower of Babylon

 

题意:

摘自lrj紫书——

现在有n种立方体,每种都有无穷多个,现在选择一些立方体摞成一根尽量高的柱子(对于每一个立方体来说可以选择任一条边作为高),要求上方的立方体的底面长宽严格小于它下方立方体的底面长宽。

 

思路:

题目中提到了“每种都有无穷多个”,实际上我们只需要看做只有朝向3个方向的3个立方体,因为考虑多的立方体一定会和前面的产生重复,两者之间就能搭一个。

把所有立方体(3个方向看做3个不同的立方体)按照底面积从小到大排列,求最长上升子序列即可。理由是对于两个S1<S2的立方体,第二个立方体一定无法搭在第一个立方体上,所以对于这个排好序的数列,一定是前面的搭在后面的上面。

 

代码:

#include<bits/stdc++.h>
using namespace std;

#define maxn 30

struct sub {
	int a,b,c;
	sub() {}
	sub(int x,int y,int z) {
		if(y>z) swap(y,z);
		a=x,b=y,c=z;
	}
	bool operator < (const sub& oth) const {
		return b*c>oth.b*oth.c;
	}
};

int n;
sub a[maxn*3+5];
int f[maxn*3+5];

void readin() {
	for(int i=1; i<=n; i++) {
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		a[i*3-2]=sub(x,y,z);
		a[i*3-1]=sub(y,x,z);
		a[i*3]=sub(z,x,y);
	}
	sort(a+1,a+n*3+1);
}

bool judge(sub x,sub y) {
	if(x.b<y.b&&x.c<y.c) return true;
	return false;
}

int dp() {
	memset(f,0,sizeof(f));
	f[1]=a[1].a;
	int ans=f[1];
	for(int i=2; i<=n*3; i++) {
			f[i]=a[i].a;
		for(int j=1; j<i; j++) {
			if(judge(a[i],a[j])) f[i]=max(f[i],f[j]+a[i].a);
			ans=max(ans,f[i]);
		}
	}
	return ans;
}

int main() {
	int T=0;
	while(~scanf("%d",&n)&&n) {
		readin();
		int ans=dp();
		printf("Case %d: maximum height = %d\n",++T,ans);
	}

	return 0;
}

 

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值