概要
近年来图神经网络受到大家越来越多的关注,在文本分类(Text classification),序列标注(Sequence labeling), 神经机器翻译(Neural machine translation),关系抽取(Relation extraction),事件抽取(Event extraction), 图像分类(Image Classification),视觉推理(Visual Reasoning),语义分割(Semantic Segmentation)等等领域都有了一些应用。本文主要分享先当下最为广泛的几种图神经网络的结构。参考:Tutorial on Graph Representation Learning, AAAI 2019
Basic GNNs
基本思想
图神经网络的一个基本思想,就是基于节点的局部邻居信息对节点进行embedding。直观来讲,就是通过神经网络来聚合每个节点及其周围节点的信息。
图神经网络的几个性质如下:
- 节点在每一层都会有embedding
- 模型可以达到任意深度
- 第零层的节点的embedding就是他的输入特征向量
实现
我们所要探讨的是,节点如何获取它的邻居节点的信息。最基本的想法就是聚合一个节点的邻居节点信息时&#x