DRSN代码调试未成功

#coding=utf-8
import warnings
import tensorflow as tf
warnings.filterwarnings('ignore', category=FutureWarning)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import numpy as np
import keras
from keras import optimizers
from keras.layers import Input, Dense, ZeroPadding2D, Dropout, Activation, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as plt
from PIL import Image
from tensorflow.keras.optimizers import Adam
def convert_to_one_hot(Y, C):
    Y = np.eye(C)[Y.reshape(-1)].T
    return Y
# 数据文件夹

train_data_dir = "D:\\单子\\数据集\\AllTrain"
test_data_dir = "D:\\单子\\数据集\\AllTest"



classNum = 3

def read_data(data_dir):
    datas = []
    labels = []
    fpaths = []
    for fname in os.listdir(data_dir):
        fpath = os.path.join(data_dir, fname)
        fpaths.append(fpath)
        image = Image.open(fpath)

        data = np.array(image) / 255.0
        label = int(fname.split("_")[0])
        datas.append(data)
        labels.append(label)

    datas = np.array(datas)
    labels = np.array(labels)
    #datas=datas.reshape(datas.shape[0],100,100,1)
    print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))
    return fpaths, datas, labels
train_fpaths, train_imageData, train_imageLabel = read_data(train_data_dir)
test_fpaths, test_imageData, test_imageLabel = read_data(test_data_dir)

print("111111111111111111111111111")

# 随机打乱训练数据和标签
N = train_imageData.shape[0]
index = np.random.permutation(N)
train_data  = train_imageData[index,:,:]
train_label = train_imageLabel[index]  ###################对标签调整

# 对训练数据升维,标签one-hot
print("zhiqian",train_data.shape)
train_data  = np.expand_dims(train_data, axis=3)
train_label = convert_to_one_hot(train_label,classNum).T

print("zhihou",train_data.shape)
# 随机打乱测试数据和标签
N_test = test_imageData.shape[0]
test_index = np.random.permutation(N_test)
test_data  = test_imageData[test_index,:,:]
test_label = test_imageLabel[test_index] ###################对标签调整
# 对测试数据升维,标签one-hot

test_data  = np.expand_dims(test_data, axis=3)
test_label = convert_to_one_hot(test_label,classNum).T

print(test_label.shape)
# 划分数据集
#N = data.shape[0]
#num_train = round(N*0.8)
X_train = train_data
Y_train = train_label

X_test  = test_data
Y_test  = test_label

# wid_size=40
# hig_size=80
wid_size=200
hig_size=12
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

#写一个LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure("loss")
        # acc
        #plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            #plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()
    def acc_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure("acc")
        # acc
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        if loss_type == 'epoch':
            # val_acc
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()



def residual_shrinkage_block(inputs, out_channels, downsample_strides=1):
    
    in_channels = inputs.shape[-1]
    
    residual = tf.keras.layers.BatchNormalization()(inputs)
    residual = tf.keras.layers.Activation('relu')(residual)
    residual = tf.keras.layers.Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), 
                                      padding='same')(residual)

    residual = tf.keras.layers.BatchNormalization()(residual)
    residual = tf.keras.layers.Activation('relu')(residual)
    residual = tf.keras.layers.Conv2D(out_channels, 3, padding='same')(residual)
    
    residual_abs = tf.abs(residual)
    abs_mean = tf.keras.layers.GlobalAveragePooling2D()(residual_abs)
    
    scales = tf.keras.layers.Dense(out_channels, activation=None)(abs_mean)
    scales = tf.keras.layers.BatchNormalization()(scales)
    scales = tf.keras.layers.Activation('relu')(scales)
    scales = tf.keras.layers.Dense(out_channels, activation='sigmoid')(scales)
    
    thres = tf.keras.layers.multiply([abs_mean, scales])
    
    sub = tf.keras.layers.subtract([residual_abs, thres])
    zeros = tf.keras.layers.subtract([sub, sub])
    n_sub = tf.keras.layers.maximum([sub, zeros])
    residual = tf.keras.layers.multiply([tf.sign(residual), n_sub])
    
    out_channels = residual.shape[-1]
    
    if in_channels != out_channels:
        identity = tf.keras.layers.Conv2D(out_channels, 1, strides=(downsample_strides, downsample_strides), padding='same')(inputs)
    
    residual = tf.keras.layers.add([residual, identity])

    #input = np.zeros((1, wid_size, hig_size, 3), np.float32)
    #input = np.zeros((1,wid_size,hig_size,3), np.float32)

    #residual = residual_shrinkage_block(input, 8)

    model = tf.keras.Model(input1, outputs = residual)
    
    #return residual
    return model

#print("111111111111111111111111111")

# input = np.zeros((1, 224, 224, 3), np.float32)
#input = np.zeros((1,wid_size,hig_size,3), np.float32)

#residual = residual_shrinkage_block(input, 8)
#residual_shrinkage_block(inputs, 8).shape

#model = tf.keras.Model(inputs = input, outputs = residual)

input1 = np.zeros((1,wid_size,hig_size,3), np.float32)

print("111111111111111111111111111")

model = residual_shrinkage_block(input1, 8)

model.summary()

sgd=Adam(learning_rate=0.001,decay=1e-6, amsgrad=False)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
history = LossHistory() # 创建一个history实例


model.fit(X_train, Y_train, epochs=200, batch_size=16, verbose=1,
            validation_data=(X_test, Y_test),callbacks=[history])

print("111111111111111111111111111")

#model = tf.keras.Model(inputs = input, outputs = residual)



# def CNN(input_shape=(wid_size, hig_size, 1) , classes=classNum):
#     X_input = Input(input_shape)

#     X = Conv2D(filters=8, kernel_size=(20,3), strides=(1, 1), padding='same', activation='relu', name='conv1')(
#         X_input)
#     X = MaxPooling2D((10, 1), strides=(10, 1), name='pool1')(X)
#     ####12
#     X = Conv2D(filters=16, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu', name='conv2')(X)
#     X = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(X)

#     # X = Conv2D(filters=16, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu', name='conv3')(X)
#     # X = MaxPooling2D((3, 3), strides=(2, 2), name='pool3')(X)

#     X = Flatten(name='flatten')(X)
#     X = Dropout(0.5)(X)
#     X = Dense(16, activation='relu', name='fc1')(X)
#     X = Dropout(0.5)(X)
#     X = Dense(classes, activation='softmax', name='fc2')(X)

#     model = Model(inputs=X_input, outputs=X, name='CNN')
#     return model


# model = CNN(input_shape=(wid_size, hig_size, 1), classes=classNum)

model.summary()



import time
start = time.time()
 #sgd=Adam(lr=0.001,decay=1e-6, amsgrad=False)
 #参数已经弃用
sgd=Adam(learning_rate=0.001,decay=1e-6, amsgrad=False)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])

history = LossHistory() # 创建一个history实例


model.fit(X_train, Y_train, epochs=200, batch_size=16, verbose=1,
            validation_data=(X_test, Y_test),callbacks=[history])

preds_train = model.evaluate(X_train, Y_train)
print("Train Loss = " + str(preds_train[0]))
print("Train Accuracy = " + str(preds_train[1]))
# #
# # model.save('E:\\oymotion\\DataBase\\gForceOct\\xiaotuiData\\noActSeg\\WUD_model.h5')

# preds_test  = model.evaluate(X_test, Y_test)
# print("Test Loss = " + str(preds_test[0]))
# print("Test Accuracy = " + str(preds_test[1]))

# end = time.time()
# print("time:",end-start)

# history.loss_plot('epoch')
# # history.acc_plot('epoch')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高高呀~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值