写了段测试程序,模拟了一下这三种数据类型的数据检索。程序考虑不一定全面,仅作参考吧。
测试程序首先产生 n 个随机字符串,分别存入这三个集合容器。在开始检索测试时启动计时器。为防止编译器自动优化代码造成错误的测试结果,把每次检索出的结果追加到字符串 s 中,并在测试结束后返回其长度。
测试代码如下:
use std::collections::{BTreeMap, HashMap};
extern crate rand;
use rand::Rng;
use std::time::Instant;
fn test_vec(n: usize) -> usize {
let mut rng = rand::thread_rng();
let mut x = Vec::new();
for _ in 0..n {
let s = rng.gen::<u128>().to_string();
x.push((s.clone(), s.clone()));
}
let mut s = String::new();
let start = Instant::now();
for m in x.iter() {
for n in x.iter() {
if m == n {
s.push_str(n.0.as_str());
break;
}
}
}
println!("vec --- time cost: {:?} us", start.elapsed().as_micros());
s.len()
}
fn test_hashmap(n: usize) -> usize {
let mut rng = rand::thread_rng();
let mut x = HashMap::new();
for _ in 0..n {
let s = rng.gen::<u128>().to_string();
x.insert(s.clone(), s.clone());
}
let mut s = String::new();
let start = Instant::now();
for (m, _) in x.iter() {
let n = x.get(m).unwrap().as_str();
s.push_str(n);
}
println!("haspmap --- time cost: {:?} us", start.elapsed().as_micros());
s.len()
}
fn test_btreemap(n: usize) -> usize {
let mut rng = rand::thread_rng();
let mut x = BTreeMap::new();
for _ in 0..n {
let s = rng.gen::<u128>().to_string();
x.insert(s.clone(), s.clone());
}
let mut s = String::new();
let start = Instant::now();
for (m, _) in x.iter() {
let n = x.get(m).unwrap().as_str();
s.push_str(n);
}
println!("btreemap --- time cost: {:?} us", start.elapsed().as_micros());
s.len()
}
fn main() {
let n = 10;
println!("n = {} ", n);
test_vec(n);
test_hashmap(n);
test_btreemap(n);
let n = 100;
println!("n = {} ", n);
test_vec(n);
test_hashmap(n);
test_btreemap(n);
let n = 1000;
println!("n = {} ", n);
test_vec(n);
test_hashmap(n);
test_btreemap(n);
let n = 10000;
println!("n = {} ", n);
test_vec(n);
test_hashmap(n);
test_btreemap(n);
let n = 100000;
println!("n = {} ", n);
test_vec(n);
test_hashmap(n);
test_btreemap(n);
}
测试结果如下:
>cargo run --release
Compiling demo v0.1.0
Finished release [optimized] target(s) in 1.42s
Running `target\release\demo.exe`
n = 10
vec --- time cost: 7 us
haspmap --- time cost: 2 us
btreemap --- time cost: 2 us
n = 100
vec --- time cost: 21 us
haspmap --- time cost: 6 us
btreemap --- time cost: 8 us
n = 1000
vec --- time cost: 1211 us
haspmap --- time cost: 60 us
btreemap --- time cost: 76 us
n = 10000
vec --- time cost: 217291 us
haspmap --- time cost: 628 us
btreemap --- time cost: 1227 us
n = 100000
vec --- time cost: 24202474 us
haspmap --- time cost: 11605 us
btreemap --- time cost: 19651 us
可见,HaspMap 在 n = 10, 100, 1000, 10000, 100000 所有规模测试中,全部表现出较高的检索效率。