前言
我们学完了DHT11的应用之后,就开始学习双路IC采集频率
一、软件准备
1、MDK4或者MDK5(可到官网或者其他途径获取,本人使用的是MDK5)
2、Cubemx(可到官网自行下载)
3、安装G4的包(1.2.0,1.3.0以及1.4.0均可)
4、串口调试助手(COM)
二、PULS1,PULS2
1.扩展板上模块的原理图以及我们需要配置的元素
PULS1和PULS2部分原理图:
模块在扩展板的布局:
分析:如果要采集PULS1和PULS2则需要将PA1和PA2跳线到PULS1和PULS2。
2.CubeMx的配置步骤
RCC配置:略
设置调试接口:设置为Serial Wire
配置定时器TIM2:
生成工程:点击GENERATE CODE生成工程。
3.代码添加及修改
打开赛点资源包->新版竞赛平台->新版竞赛平台->库文件->解压stm32cube_fw_g4_v120.zip->打开stm32cube_fw_g4_v120->STM32Cube_FW_G4_V1.2.0->Projects->NUCLEO-G431RB->Examples->TIM->TIM_InputCapture->src->main.c
在工程文件夹中创建自己的interrupt.h和interrupt.c并加入工程
创建一个空的C文件,但不要加入工程, 命名为temp.c
打开刚刚从库文件找到的main.c
复制红框中的部分到temp.c
利用keil自带的Ctrl+F功能替换变量名字:
uwIC2Value1->uwIC2Value1_T2CH2
之后继续将
uwIC2Value2->uwIC2Value2_T2CH2, uwDiffCapture->uwDiffCapture_T2CH2
uhCaptureIndex->uhCaptureIndex_T2CH2,uwFrequency->uwFrequency_T2CH2
然后修改红框中的部分,将其改为图中的内容
修改之后将变量定义和函数一起复制黏贴到interrupt.c中
再然后回到temp.c
修改变量:
uwIC2Value1_T2CH2->uwIC3Value1_T2CH3
uwIC2Value2_T2CH2->uwIC3Value2_T2CH3
uwDiffCapture_T2CH2->uwDiffCapture_T2CH3
uhCaptureIndex_T2CH2->uhCaptureIndex_T2CH3
uwFrequency_T2CH2->uwFrequency_T2CH3
之后修改函数中的TIM_ACTIVE_CHANNEL_2为TIM_ACTIVE_CHANNEL_3
TIM_CHANNEL_2为TIM_CHANNEL_3
之后再将变量和函数部分粘贴到interrupt.c中
再在interrupt.c中的函数添加锁定定时器判断:
之后回到我们工程的main.c中:
添加头文件:
添加变量:
液晶初始化,以及开中断:
之后将temp.c删除即可
三、测试代码
代码修改完成之后,添加lcd.h, lcd.c, fonts.h到工程中以方便显示。
interrupt.h:
#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__
#include "main.h"
#endif
interrupt.c:
#include "interrupt.h"
/* Captured Values */
uint32_t uwIC2Value1_T2CH2 = 0;
uint32_t uwIC2Value2_T2CH2 = 0;
uint32_t uwDiffCapture_T2CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T2CH2 = 0;
/* Frequency Value */
uint32_t uwFrequency_T2CH2 = 0;
/* Captured Values */
uint32_t uwIC3Value1_T2CH3 = 0;
uint32_t uwIC3Value2_T2CH3 = 0;
uint32_t uwDiffCapture_T2CH3 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T2CH3 = 0;
/* Frequency Value */
uint32_t uwFrequency_T2CH3 = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM2)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
if(uhCaptureIndex_T2CH2 == 0)
{
/* Get the 1st Input Capture value */
uwIC2Value1_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
uhCaptureIndex_T2CH2 = 1;
}
else if(uhCaptureIndex_T2CH2 == 1)
{
/* Get the 2nd Input Capture value */
uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
/* Capture computation */
if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
{
uwDiffCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2);
}
else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
{
/* 0xFFFF is max TIM1_CCRx value */
uwDiffCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
uwFrequency_T2CH2 = 1000000 / uwDiffCapture_T2CH2;
uhCaptureIndex_T2CH2 = 0;
}
}
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_3)
{
if(uhCaptureIndex_T2CH3 == 0)
{
/* Get the 1st Input Capture value */
uwIC3Value1_T2CH3 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_3);
uhCaptureIndex_T2CH3 = 1;
}
else if(uhCaptureIndex_T2CH3 == 1)
{
/* Get the 2nd Input Capture value */
uwIC3Value2_T2CH3 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_3);
/* Capture computation */
if (uwIC3Value2_T2CH3 > uwIC3Value1_T2CH3)
{
uwDiffCapture_T2CH3 = (uwIC3Value2_T2CH3 - uwIC3Value1_T2CH3);
}
else if (uwIC3Value2_T2CH3 < uwIC3Value1_T2CH3)
{
/* 0xFFFF is max TIM1_CCRx value */
uwDiffCapture_T2CH3 = ((0xFFFFFFFF - uwIC3Value1_T2CH3) + uwIC3Value2_T2CH3) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
uwFrequency_T2CH3 = 1000000 / uwDiffCapture_T2CH3;
uhCaptureIndex_T2CH3 = 0;
}
}
}
}
main.h:没有做修改所以不放出
main.c:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "lcd.h"
#include "interrupt.h"
#include "stdio.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
extern uint32_t uwFrequency_T2CH2;
extern uint32_t uwFrequency_T2CH3;
char text[30];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_3);
LCD_Init();
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
sprintf(text, "ch2:%05d", uwFrequency_T2CH2);
LCD_DisplayStringLine(Line0, text);
sprintf(text, "ch3:%05d", uwFrequency_T2CH3);
LCD_DisplayStringLine(Line1, text);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
四、演示效果
五、工程链接
六、总结
以上就是双路IC采集频率的配置过程,测试代码以及测试效果
以往的扩展板模块:
【STM32G431RBTx】备战蓝桥杯嵌入式→扩展模块→SEG
【STM32G431RBTx】备战蓝桥杯嵌入式→扩展模块→双路ADC/AO1, AO2
【STM32G431RBTx】备战蓝桥杯嵌入式→扩展模块→光敏电阻/TRAO, TRAO
【STM32G431RBTx】备战蓝桥杯嵌入式→扩展模块→AKEY
【STM32G431RBTx】备战蓝桥杯嵌入式→扩展模块→DS18B20
【STM32G431RBTx】备战蓝桥杯嵌入式→扩展模块→DHT11