FPGA学习-VGA显示

一、VGA原理

(一)VGA协议

VGA(Video Graphics Array)是IBM在1987年随PS/2机⼀起推出的⼀种视频,具有分辨率⾼、显⽰速率快、颜⾊丰富等优点,在彩 ⾊显⽰器领域得到了⼴泛的应⽤。不⽀持热插拔,不⽀持⾳频传输。对于⼀些嵌⼊式VGA显⽰系统,可以在不使⽤VGA显⽰卡和计算机的 情况下,实现VGA图像的显⽰和控制。VGA显⽰器具有成本低、结构简单、应⽤灵活的优点。

(二)VGA端口结构

VGA端口是视频输出端口,端口一共包含15个管脚,如下图

在通常使用的连接方法里面,15个管脚里面的5个是最重要的,他们 包括3个基本红,绿,蓝三条基本色彩线和水平与垂直两条控制线。

(三)色彩原理

三基⾊是指通过其他颜⾊的混合⽆法得到的“基本 ⾊”由于⼈的⾁眼有感知红、绿、蓝三种不同颜⾊的锥体细胞,因此⾊彩空间通常可以由三种基本⾊来表达

设计RGB信号时,既可以R信号、G信号和B信号独⽴的赋值,最后连到端⼝上,也可以直接⽤RGB当做⼀个整体信号,RGB信号在使 ⽤时的位宽有三种常见格式,以你的VGA解码芯⽚的配置有关。

1.RGB_8,R:G:B = 3:3:2,即RGB332 2.RGB_16,R:G:B = 5:6:5,即RGB565 3.RGB_24,R:G:B = 8:8:8,即RGB888

(四)扫描原理

1.扫描方式

VGA显⽰器扫描⽅式分为逐⾏扫描和隔⾏扫描:逐⾏扫描是扫描从屏幕左上⾓⼀点开始,从左像右逐点扫描,每扫描完⼀⾏,电⼦束回 到屏幕的左边下⼀⾏的起始位置,在这期间,CRT对电⼦束进⾏消隐,每⾏结束时,⽤⾏同步信号进⾏同步;当扫描完所有的⾏,形成⼀ 帧,⽤场同步信号进⾏场同步,并使扫描回到屏幕左上⽅,同时进⾏场消隐,开始下⼀帧。隔⾏扫描是指电⼦束扫描时每隔⼀⾏扫⼀线,完成 ⼀屏后在返回来扫描剩下的线,隔⾏扫描的显⽰器闪烁的厉害,会让使⽤者的眼睛疲劳。因此我们⼀般都采⽤逐⾏扫描的⽅式。

2.逐行扫描

一行紧跟一行的扫描方式称为逐行扫描 电子束在在靶面上或者屏幕上的扫描轨迹称为扫描光栅

  • 逐行扫描电流

  • 行偏转线圈、场偏转线圈共同控制电子束的方向

3.隔行扫描

·隔行扫描所应满足的条件: 1.下一帧扫描起始点应上一帧起始点相同,以便保证各帧扫描光栅重叠。一帧的总行数Z必须为整数 ⒉.相邻两场扫描光栅必须均匀镶嵌,以获得最高清晰度 一帧的总行数必须为奇数,或任何一场必须包含-个半行

优点

  • 隔行扫描电视信号的频带是逐行扫描电视信号频带的一半,即把帧频降低了一半‘’

缺点

  • 行间闪烁效应

  • 并行显像

  • 真实并行

  • 视在并行

  • “锯齿化”现象

  • 隔行扫描的垂直分解力低于逐行扫描的垂直分解力

(五)⾏场信号

⼀开始看这个时序图可能看不懂,它是把⾏场信号绘制在同⼀张图⾥,说明⾏场信号的控制是相似的,只是时间参数不⼀样⽽已。如果 展开的话,其实时序是这样的:

这样就清楚了,⼤致是若⼲个HS信号才组合⽽成⼀个VS,如果在⼀副图⽚中,那正确的时序表⽰⽅式应该如下图这样。

video为“显⽰区域”,Right porder和Front porch常常加在⼀起称为“显⽰前沿”,⼀个时序其实就是先拉⾼⼀段较短的“信号同 步”时间,然后拉低⼀段很长的时间,这就是⼀个回合。同时需要注意,其实也可以完全相反。即先拉低⼀段时间“信号同步”时间,然后 拉⾼⼀段很长的时间。

二、显示姓名学号

(一)生成字模

(二)代码

module vga_text(
OSC_50,     //原CLK2_50时钟信号
VGA_CLK,    //VGA自时钟
VGA_HS,     //行同步信号
VGA_VS,     //场同步信号
VGA_BLANK,  //复合空白信号控制信号  当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC,   //符合同步控制信号      行时序和场时序都要产生同步脉冲
VGA_R,      //VGA绿色
VGA_B,      //VGA蓝色
VGA_G);     //VGA绿色
 input OSC_50;     //外部时钟信号CLK2_50
 output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
 output [7:0] VGA_R,VGA_B,VGA_G;
 parameter H_FRONT = 16;     //行同步前沿信号周期长
 parameter H_SYNC = 96;      //行同步信号周期长
 parameter H_BACK = 48;      //行同步后沿信号周期长
 parameter H_ACT = 640;      //行显示周期长
 parameter H_BLANK = H_FRONT+H_SYNC+H_BACK;        //行空白信号总周期长
 parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT;  //行总周期长耗时
 parameter V_FRONT = 11;     //场同步前沿信号周期长
 parameter V_SYNC = 2;       //场同步信号周期长
 parameter V_BACK = 31;      //场同步后沿信号周期长
 parameter V_ACT = 480;      //场显示周期长
 parameter V_BLANK = V_FRONT+V_SYNC+V_BACK;        //场空白信号总周期长
 parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT;  //场总周期长耗时
 reg [10:0] H_Cont;        //行周期计数器
 reg [10:0] V_Cont;        //场周期计数器
 wire [7:0] VGA_R;         //VGA红色控制线
 wire [7:0] VGA_B;         //VGA绿色控制线
 wire [7:0] VGA_G;         //VGA蓝色控制线
 reg VGA_HS;
 reg VGA_VS;
 reg [10:0] X;             //当前行第几个像素点
 reg [10:0] Y;             //当前场第几行
 reg CLK_25;
 always@(posedge OSC_50)
    begin 
      CLK_25=~CLK_25;         //时钟
    end 
    assign VGA_SYNC = 1'b0;   //同步信号低电平
    assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK));  //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
    assign VGA_CLK = ~CLK_to_DAC;  //VGA时钟等于CLK_25取反
    assign CLK_to_DAC = CLK_25;
 always@(posedge CLK_to_DAC)
    begin
        if(H_Cont<H_TOTAL)           //如果行计数器小于行总时长
            H_Cont<=H_Cont+1'b1;      //行计数器+1
        else H_Cont<=0;              //否则行计数器清零
        if(H_Cont==H_FRONT-1)        //如果行计数器等于行前沿空白时间-1
            VGA_HS<=1'b0;             //行同步信号置0
        if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
            VGA_HS<=1'b1;             //行同步信号置1
        if(H_Cont>=H_BLANK)          //如果行计数器大于等于行空白总时长
            X<=H_Cont-H_BLANK;        //X等于行计数器-行空白总时长   (X为当前行第几个像素点)
        else X<=0;                   //否则X为0
    end
 always@(posedge VGA_HS)
    begin
        if(V_Cont<V_TOTAL)           //如果场计数器小于行总时长
            V_Cont<=V_Cont+1'b1;      //场计数器+1
        else V_Cont<=0;              //否则场计数器清零
        if(V_Cont==V_FRONT-1)       //如果场计数器等于场前沿空白时间-1
            VGA_VS<=1'b0;             //场同步信号置0
        if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
            VGA_VS<=1'b1;             //场同步信号置1
        if(V_Cont>=V_BLANK)          //如果场计数器大于等于场空白总时长
            Y<=V_Cont-V_BLANK;        //Y等于场计数器-场空白总时长    (Y为当前场第几行)  
        else Y<=0;                   //否则Y为0
    end
    reg valid_yr;
 always@(posedge CLK_to_DAC)
    if(V_Cont == 10'd56)         //场计数器=32时
        valid_yr<=1'b1;           //行输入激活
    else if(V_Cont==10'd512)     //场计数器=512时
        valid_yr<=1'b0;           //行输入冻结
    wire valid_y=valid_yr;       //连线   
    reg valid_r;            
 always@(posedge CLK_to_DAC)   
    if((H_Cont == 10'd56)&&valid_y)     //行计数器=32时
        valid_r<=1'b1;                   //像素输入激活
    else if((H_Cont==10'd512)&&valid_y) //行计数器=512时 
        valid_r<=1'b0;                   //像素输入冻结
    wire valid = valid_r;               //连线
    wire[10:0] x_dis;     //像素显示控制信号
    wire[10:0] y_dis;     //行显示控制信号
    assign x_dis=X;       //连线X   192 = (640-256 ) /2
    assign y_dis=Y;       //连线Y   231 = (480- 18) /2
        parameter  //点阵字模:每一行char_lineXX是显示的一行,共272列,256
    char_line00=256'hFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,  //第1行
    char_line01=256'h000000000000000000000000000000000000000000000000000000000000000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值