目录
一、AVL的概念
- AVL树是最先发明的自平衡二叉查找树,AVL是一颗空树,或者具备下列性质的二叉搜索树:它的左右子树都是AVL树,且左右子树的高度差的绝对值不超过1。AVL树是一颗高度平衡搜索二叉树,通过控制高度差去控制平衡。
- AVL树得名于它的发明者G.M. Adelson-Velsky和E.M.Landis是两个前苏联的科学家,他们在1962年的论文《An algorithm for the organization of information》中发表了它。
- AVL树实现这里我们引入一个平衡因子(balance factor)的概念,每个结点都有一个平衡因子,任何结点的平衡因子等于右子树的高度减去左子树的高度,也就是说任何结点的平衡因子等于0/1/-1,AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡,就像一个风向标一样。
- 思考一下为什么AVL树是高度平衡搜索二又树,要求高度差不超过1,而不是高度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,而是有些情况是做不到高度差是0的。比如一棵树是2个结点,4个结点等情况下,高度差最好就是1,无法做到高度差是0
- AVL树整体结点数量和分布和完全二叉树类似,高度可以控制在logN,那么增删查改的效率也可以控制在O(logN),相比二叉搜索树有了本质的提升

插入13后:

二、AVL树的实现
2.1 AVL树的结构
template<class K, class V>
struct AVLTreeNode
{
// 需要parent指针,后续更新平衡因⼦可以看到
pair<K, V> _kv;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf; // balance factor
AVLTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{
}
};
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
//...
private:
Node* _root = nullptr;
};
2.2 AVL树的插入
2.2.1 AVL树插入一个值的大概过程
- 插入一个值按二叉搜索树规则进行插入。
- 新增结点以后,只会影响祖先结点的高度,也就是可能会影响部分祖先结点的平衡因子,所以更新从新增结点->根结点路径上的平衡因子,实际中最坏情况下要更新到根,有些情况更新到中间就可以停止了,具体情况我们下面再详细分析。
- 更新平衡因子过程中没有出现问题,则插入结束
- 更新平衡因子过程中出现不平衡,对不平衡子树旋转,旋转后本质调平衡的同时,本质降低了子树的高度,不会再影响上一层,所以插入结束。
2.2.2 平衡因子更新
更新原则:
- 平衡因子=右子树高度-左子树高度
- 只有子树高度变化才会影响当前结点平衡因子。
- 插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在parent的左子树,parent平衡因子
- parent所在子树的高度是否变化决定了是否会继续往上更新
更新停止条件:
- 更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0或者1->0,说明更新前parent子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会影响parent的父亲结点的平衡因子,更新结束。
- 更新后parent的平衡因子等于1或-1,更新前更新中parent的平衡因子变化为0->1或者0->-1,说明更新前parent子树两边一样高,新增的插入结点后,parent所在的子树一边高一边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上更新。
- 更新后parent的平衡因子等于2或-2,更新前更新中parent的平衡因子变化为1->2或者-1->-2,说明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的目标有两个:1、把parent子树旋转平衡。2、降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。
- 不断更新,更新到根,跟的平衡因子是1或-1也停止了。
更新到10结点平衡因子已经不平衡,需要旋转处理

更新到中间结点,3为根的子树高度不变,不会影响上一层,更新结束

最坏更新到根停止

2.2.3 插入节点及更新平衡因子的代码实现
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}else if(cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入节点
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else {
parent->_left = cur;
}
//链接父亲
cur->_parent = parent;
//更新平衡因子
while (parent)
{
if (cur == parent->left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//旋转
break;
}
else {
assert(false);
}
}
return true;
}
2.3 旋转
2.3.1 旋转的规则
- 保持搜索树的规则
- 让旋转的树从不平衡变平衡,其次降低旋转树的高度
旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。
说明:下面的图中,有些结点我们给的是具体值,如10和5等结点,这里是为了方便讲解,实际中是什么值都可以,只要大小关系符合搜索树的性质即可。
2.3.2 右单旋
- 本图1展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/图5进行了详细描述。
- 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要往右边旋转,控制两棵树的平衡。
- 旋转核心步骤,因为5<b子树的值<10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。如果插入之前10整棵树的一个局部子树,旋转后不会再影响上一层,插入结束了。




2.3.3 右单旋(代码实现)
void RotateR(Node* parent)
{
Node* pParent = parent->_parent;
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if(subLR!=nullptr)
subLR->parent = parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (pParent->_left == parent)
{
pParent->_left = subL;
}
else
{
pParent->_right = subL;
}
subL->_parent = pParent;
}
subL->_bf = 0;
parent->_bf = 0;
}
2.3.4 左单旋
- 下图展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树,是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上面左旋类似。
- 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往左边旋转,控制两棵树的平衡。
- 旋转核心步骤,因为10<b子树的值15,将b变成10的右子树,10变成15的左子树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。如果插入之前10整棵树的一个局部子树,旋转后不会再影响上一层,插入结束了。

2.3.5 左单旋(代码实现)
void RotateL(Node* parent)
{
Node* pParent = parent->_parent;
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if(pParent->_left==parent)
{
pParent->_left = subR;
}
else
{
pParent->_right = subR;
}
subR->_parent = pParent;
}
subR->_bf = 0;
parent->_bf = 0;
}
2.3.6 左右双旋
通过图7和图8可以看到,左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变成h+1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,需要用两次旋转才能解决,以5为旋转点进行一个左单旋,以10为旋转点进行一个右单旋,这棵树这棵树就平衡了。
- 图7和图8分别为左右双旋中h==0和h==1具体场景分析,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为8和左子树高度为h-1的e和f子树,因为我们要对b的父亲5为旋转点进行左单旋,左单旋需要动b树中的左子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察8的平衡因子不同,这里我们要分三个场景讨论。
- 场景1:h>=1时,新增结点插入在e子树,e子树高度从h-1并为h并不断更新8->5->10平衡因子,引发旋转,其中8的平衡因子为-1,旋转后8和5平衡因子为0,10平衡因子为1。
- 场景2:h>=1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新8->5->10平衡因子,引发旋转,其中8的平衡因子为1,旋转后8和10平衡因子为0,5平衡因子为-1。
- 场景3:h==0时,a/b/c都是空树,b自己就是一个新增结点,不断更新5->10平衡因子,引发旋转,其中8的平衡因子为0,旋转后8和10和5平衡因子均为0。

2.3.7 左右双旋代码实现)
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == -1)
{
subLR->_bf = 0;
subL->_bf = 0;
parent->_bf = 1;
}
else if (bf == 1)
{
subLR->_bf = 0;
subL->_bf = -1;
parent->_bf = 0;
}
else if(bf == 0)
{
subLR->_bf = 0;
subL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
2.3.8 右左双旋
跟左右双旋类似,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为12和左子树高度为h-1的e和f子树,因为我们要对b的父亲15为旋转点进行右单旋,右单旋需要动b树中的右子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察12的平衡因子不同,这里我们要分三个场景讨论。
- 场景1:h>=1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因子为-1,旋转后10和12平衡因子为0,15平衡因子为1。
- 场景2:h>=1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因子为1,旋转后15和12平衡因子为0,10平衡因子为-1。
- 场景3:h==0时,a/b/c都是空树,b自己就是一个新增结点,不断更新15->10平衡因子,引发旋转,其中12的平衡因子为0,旋转后10和12和15平衡因子均为0。
2.3.9 右左双旋(代码实现)
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == -1)
{
parent->_bf = 0;
subRL->_bf = 0;
subR->_bf = 1;
}
else if (bf == 1)
{
parent->_bf = -1;
subRL->_bf = 0;
subR->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subRL->_bf = 0;
subR->_bf = 0;
}
else
{
assert(false);
}
}
2.3.10 插入代码
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}else if(cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入节点
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
//链接父亲
cur->_parent = parent;
//更新平衡因子
while (parent)
{
if (cur == parent->left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//旋转
if (parent->_bf == -2 && cur->_bf == -1)
{
//右旋转
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1)
{
//左旋转
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
//左右双旋
RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
//右左双旋
RotateRL(parent);
}
else
{
assert(false);
}
break;
}
else {
assert(false);
}
}
return true;
}
2.4 中序遍历代码
void InOrder()
{
_InOrder(_root);
cout << endl;
}
private:
Node* _root = nullptr;
void _InOrder(Node* _root)
{
if (_root == nullptr)
return;
_InOrder(_root->_left);
cout << _root->_kv.first << ":" << _root->_kv.second << endl;
_InOrder(_root->_right);
}
2.5 测试代码
#include"AVLTree.h"
void TestAVLTree1()
{
AVLTree<int, int> t;
int a[] = { 4,2,6,1,3,5,15,7,16,14 };
for (auto ele : a)
{
t.insert({ ele,ele });
}
t.InOrder();
}
int main()
{
TestAVLTree1();
return 0;
}
2.6 AVL树平衡检测
bool IsBalanceTree()
{
return _IsBalanceTree(_root);
}
private:
Node* _root = nullptr;
void _InOrder(Node* _root)
{
if (_root == nullptr)
return;
_InOrder(_root->_left);
cout << _root->_kv.first << ":" << _root->_kv.second << endl;
_InOrder(_root->_right);
}
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
if (root == nullptr)
return true;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
if (abs(diff) >= 2)
{
cout << root->_kv.first << "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_kv.first << "平衡因子异常" << endl;
return false;
}
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
2.7 AVL树的查找
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else {
return cur;
}
}
return nullptr;
}
三、代码
3.1 AVLTree.h
#pragma once
#include<assert.h>
#include<iostream>
using namespace std;
template<class K,class V>
struct AVLTreeNode
{
pair<K, V> _kv;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf;
AVLTreeNode(const pair<K,V>& kv)
:_kv(kv)
, _left( nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
bool insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}else if(cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入节点
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
//链接父亲
cur->_parent = parent;
//更新平衡因子
while (parent)
{
if (cur == parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//旋转
if (parent->_bf == -2 && cur->_bf == -1)
{
//右旋转
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1)
{
//左旋转
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
//左右双旋
RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
//右左双旋
RotateRL(parent);
}
else
{
assert(false);
}
break;
}
else {
assert(false);
}
}
return true;
}
void RotateR(Node* parent)
{
Node* pParent = parent->_parent;
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if(subLR!=nullptr)
subLR->_parent = parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (pParent->_left == parent)
{
pParent->_left = subL;
}
else
{
pParent->_right = subL;
}
subL->_parent = pParent;
}
subL->_bf = 0;
parent->_bf = 0;
}
void RotateL(Node* parent)
{
Node* pParent = parent->_parent;
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if(pParent->_left==parent)
{
pParent->_left = subR;
}
else
{
pParent->_right = subR;
}
subR->_parent = pParent;
}
subR->_bf = 0;
parent->_bf = 0;
}
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == -1)
{
subLR->_bf = 0;
subL->_bf = 0;
parent->_bf = 1;
}
else if (bf == 1)
{
subLR->_bf = 0;
subL->_bf = -1;
parent->_bf = 0;
}
else if(bf == 0)
{
subLR->_bf = 0;
subL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == -1)
{
parent->_bf = 0;
subRL->_bf = 0;
subR->_bf = 1;
}
else if (bf == 1)
{
parent->_bf = -1;
subRL->_bf = 0;
subR->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subRL->_bf = 0;
subR->_bf = 0;
}
else
{
assert(false);
}
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBalanceTree()
{
return _IsBalanceTree(_root);
}
int Height()
{
return _Height(_root);
}
int Size()
{
return _Size(_root);
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else {
return cur;
}
}
return nullptr;
}
private:
Node* _root = nullptr;
void _InOrder(Node* _root)
{
if (_root == nullptr)
return;
_InOrder(_root->_left);
cout << _root->_kv.first << ":" << _root->_kv.second << endl;
_InOrder(_root->_right);
}
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
if (root == nullptr)
return true;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
if (abs(diff) >= 2)
{
cout << root->_kv.first << "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_kv.first << "平衡因子异常" << endl;
return false;
}
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
int _Size(Node* root)
{
if (root == nullptr)
return 0;
return _Size(root->_left) + _Size(root->_right) + 1;
}
};
3.2 test.cpp
#include<vector>
#include<time.h>
#include<stdlib.h>
#include"AVLTree.h"
void TestAVLTree1()
{
AVLTree<int, int> t;
int a[] = { 4,2,6,1,3,5,15,7,16,14 };
for (auto ele : a)
{
t.insert({ ele,ele });
}
t.InOrder();
cout<<t.IsBalanceTree();
}
void TestAVLTree2()
{
const int N = 100000;
vector<int> v;
v.reserve(N);
srand(time(0));
for (size_t i = 0; i < N; i++)
{
v.push_back(rand() + i);
}
size_t begin = clock();
AVLTree<int, int> t;
for (auto ele : v)
{
t.insert({ ele,ele });
}
size_t end = clock();
cout << "Insert:" << end - begin << endl;
cout << t.IsBalanceTree() << endl;
cout << t.Height() << endl;
cout << t.Size() << endl;
}
int main()
{
TestAVLTree2();
return 0;
}
1057

被折叠的 条评论
为什么被折叠?



