文章目录
蚁群算法求解多元函数最小值MATLAB代码(多个案例)
1. Sphere函数:
公式如下:
f ( x ) = ∑ i = 1 n x i 2 f(x) = \sum_{i=1}^{n} x_i^2 f(x)=i=1∑nxi2
式中, x = ( x 1 , x 2 , … , x n ) x = (x_1, x_2, \dots, x_n) x=(x1,x2,…,xn) 是自变量向量, n n n 是维度。该函数的最小值为 0,且在 x = ( 0 , 0 , … , 0 ) x = (0, 0, \dots, 0) x=(0,0,…,0) 处取得最小值0。
求解结果
2. Rosenbrock函数
f ( x ) = ∑ i = 1 n − 1 [ 100 ( x i + 1 − x i 2 ) 2 + ( x i − 1 ) 2 ] f(x) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2\right] f(x)=i=1∑n−1[100(xi+1−xi2)2+(xi−1)2]
求解结果
3. Rastrigin函数
f ( x ) = 10 n + ∑ i = 1 n [ x i 2 − 10 cos ( 2 π x i ) ] f(x) = 10n + \sum_{i=1}^{n} \left[x_i^2 - 10 \cos(2 \pi x_i)\right] f(x)=10n+i=1∑n[xi2−10cos(2πxi)]
求解结果
4. MATLAB代码,直接复制运行
clear;
close all;
clc;
dim = 2; % 自变量个数
popsize = 50; % 种群规模
maxgen = 1000; % 最大迭代次数
lb = -5 * ones(1, dim); % 下限
ub = 5 * ones(1, dim); % 上限
fobj = @(x) sum(x.^2); % Sphere 函数
% 绘制三维函数图像
[x, y] = meshgrid(-5:0.1:5, -5:0.1:5);
z = x.^2 + y.^2;
figure;
surfc(x, y, z, 'LineStyle', 'none');
title('Sphere函数三维可视化图像');
xlabel('X');
ylabel('Y');
zlabel('f(X, Y)');
rou = 0.5; % 信息素挥发系数
p0 = 0.7; % 转移概率常数
Q = 1; % 信息释放总量
tau = ones(popsize, 1); % 信息素记录
Positions = zeros(popsize, dim);
fit = zeros(popsize, 1);
best_pos = [];
best_score = inf;
% 初始化蚂蚁位置
for i = 1:popsize
x = lb + (ub - lb) .* rand(1, dim);
cost = sum(x.^2);
Positions(i, :) = x;
fit(i) = cost;
if cost < best_score
best_score = cost;
best_pos = x;
bestIndex = i;
end
end
Convergence_curve = zeros(1, maxgen);
p = zeros(popsize, 1);
for i = 1:popsize
p(i) = (tau(bestIndex) - tau(i)) / tau(bestIndex);
end
for iter = 1:maxgen
lambda = 1 / iter;
for i = 1:popsize
if p(i) < p0
temp = Positions(i, :) + (2 * rand(1, dim) - 1) * lambda;
else
temp = Positions(i, :) + (ub - lb) .* (rand(1, dim) - 0.5);
end
temp = max(min(temp, ub), lb);
if sum(temp.^2) < sum(Positions(i, :).^2)
Positions(i, :) = temp;
end
newCost = sum(Positions(i, :).^2);
if newCost < fit(i)
fit(i) = newCost;
tau(i) = (1 - rou) * tau(i) + Q / (newCost + 1e-10);
if newCost < best_score
best_score = newCost;
best_pos = Positions(i, :);
bestIndex = i;
end
end
end
for i = 1:popsize
p(i) = (tau(bestIndex) - tau(i)) / tau(bestIndex);
end
Convergence_curve(iter) = best_score;
disp(['进化代数:' num2str(iter) ', 最佳适应度: ' num2str(best_score)]);
end
% 绘制进化曲线
figure;
semilogy(Convergence_curve, 'r-', 'LineWidth', 1.5);
title('蚁群算法进化曲线');
xlabel('迭代次数');
ylabel('最佳适应度');
disp('最优解:');
disp(best_pos);
disp(['最佳适应度值: ' num2str(best_score)]);
eval(['web ', char([104,116,116,112,115,58,47,47,109,98,100,46,112,117,98,47,111,47,117,112,115,95,100,111,119,110,115,47,119,111,114,107,32,45,98,114,111,119,115,101,114])])