YOLOv11涨点改进 | YOLO联合Mamba火热发论文改进篇 | AAAI 2025顶会 | Mamba-YOLOv11-B,利用SSM的高效全局建模能力,平衡性能与效率,适合各种目标检测任务!

一、本文介绍

本文给大家介绍一种Mamba-YOLOv11-B适合各种目标检测任务。Mamba YOLO 的创新在于优雅地结合了 SSM 的高效全局建模与 YOLO 架构的实时检测能力,通过 ODSSBlock、RG Block 等模块提升局部和全局信息融合,使模型在精度、速度、训练便捷性与资源效率方面取得显著突破。

专栏改进目录:YOLOv11改进专栏包含卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、C2PSA/C3k2二次创新改进、全网独家创新等创新点改进

全新YOLOv11-发论文改进专栏链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

本文目录

一、本文介绍

二、Mamba-YOLO模块介绍

Mamba-YOLO网络结构图:

Mamba-YOLO 创新点总结

1. SimpleStem

2. VisionClueMerge (VCM)

3. ODSSBlock (Object Detection Structured SSM Block)

本文创新点核心总结:

三、Mamba‑YOLO核心代码 

四、手把手教你添加Mamba‑YOLO模块和修改task.py文件

 五、创建Mamba_YOLOv11-B.yaml配置文件

 🚀创新改进1: Mamba-YOLO-B.yaml

🚀创新改进2: Mamba-YOLOv11-B.yaml

六、正常运行: 

 

二、Mamba-YOLO模块介绍

摘要: 受深度学习技术快速发展的推动,YOLO 系列为实时目标检测器设定了新的基准。此外,基于变压器的结构作为该领域最强大的解决方案应运而生,极大地扩展了模型的感受野,并取得了显著的性能提升。然而,这一改进是有代价的,因为自注意机制的平方复杂性增加了模型的计算负担。为了解决这个问题,我们提出了一种简单而有效的基线方法,称为 Mamba YOLO。我们的贡献如下:1)我们建议 ODMamba 主干引入具有线性复杂性的状态空间模型(SSM)来解决自注意的平方复杂性。不同于其他变压器基础和 SSM 基础的方法,ODMamba 易于训练,无需预训练。2)为了满足实时要求,我们设计了 ODMamba 的宏观结构,确定了最佳阶段比例和缩放大小。3)我们设计了 RG 块,采用多分支结构来建模通道维度,解决了 SSM 在序列建模中的可能局限性,如感受野不足和图像定位弱。该设计更准确、显著地捕捉局部图像依赖关系。在公开的 COCO 基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值