线性代数复习
行列式(行r列c)
行列式如下(二阶 三阶 四阶)
∣ 1 2 3 4 ∣ ∣ 1 2 3 4 5 6 7 8 9 ∣ ∣ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∣ \left|\begin{matrix} 1&2\\ 3&4 \end{matrix}\right| \qquad \left|\begin{matrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{matrix}\right| \qquad \left|\begin{matrix} 1&2&3&4\\ 5&6&7&8\\ 9&10&11&12\\ 13&14&15&16 \end{matrix}\right| ∣∣∣∣1324∣∣∣∣∣∣∣∣∣∣147258369∣∣∣∣∣∣∣∣∣∣∣∣∣∣15913261014371115481216∣∣∣∣∣∣∣∣
逆序数
全排列
把n个不同的元素排成一列叫做这n个元素的全排列
对换
排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换
逆序
先规定一个标准次序,在n个元素的任意排列中,某一个元素的先后次序与标准次序不同时,构成一个逆序,所有逆序和叫做逆序数,逆序数为奇数的叫奇排列
例子:
求32514的逆序数
3 → 0 2 → 1 5 → 0 1 → 3 4 → 1 t = ∑ i = 1 5 t i = 0 + 1 + 0 + 3 + 1 = 5 3\rightarrow0\\ 2\rightarrow1\\ 5\rightarrow0\\ 1\rightarrow3\\ 4\rightarrow1\\ t=\sum_{i=1}^5t_i=0+1+0+3+1=5 3→02→15→01→34→1t=i=1∑5ti=0+1+0+3+1=5
性质
性质①
行列式与它的转置行列式相等
D = D T D=D^T D=DT
性质②
某行或列加上或减去另一行或列的几倍,行列式结果不变
性质③
某行或列×k,等于k×这个行列式
∣ 1 2 3 4 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = − 1 ∣ 2 4 6 8 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = − 1 × 2 = − 2 \left|\begin{matrix} 1&2&3&4\\ 2&3&4&5\\ 4&5&7&8\\ 8&9&10&12 \end{matrix}\right| =-1\qquad \left|\begin{matrix} 2&4&6&8\\ 2&3&4&5\\ 4&5&7&8\\ 8&9&10&12 \end{matrix}\right| =-1\times2=-2 ∣∣∣∣∣∣∣∣124823593471045812∣∣∣∣∣∣∣∣=−1∣∣∣∣∣∣∣∣224843596471085812∣∣∣∣∣∣∣∣=−1×2=−2
性质④
对换两行或列,行列式变号
∣ 0 0 0 3 0 0 3 2 1 2 3 4 0 5 2 4 ∣ = r 1 ↔ r 2 r 1 ↔ r 4 r 2 ↔ r 3 = ∣ 1 2 3 4 0 5 2 4 0 0 3 2 0 0 0 3 ∣ \left|\begin{matrix} 0&0&0&3\\ 0&0&3&2\\ 1&2&3&4\\ 0&5&2&4 \end{matrix}\right| \xlongequal[r_1\leftrightarrow r_2]{r_1\leftrightarrow r_4\quad r_2\leftrightarrow r_3} =\left|\begin{matrix} 1&2&3&4\\ 0&5&2&4\\ 0&0&3&2\\ 0&0&0&3\\ \end{matrix}\right| ∣∣∣∣∣∣∣∣0010002503323244∣∣∣∣∣∣∣∣r1↔r4r2↔r3r1↔r2=∣∣∣∣∣∣∣∣1000250032304423∣∣∣∣∣∣∣∣
= − 1 × − 1 × − 1 × 1 × 5 × 3 × 3 = − 45 =-1\times-1\times-1\times1\times5\times3\times3=-45 =−1×−1×−1×1×5×3×3=−45
性质⑤
如果行列式有两行或列完全相同或成比例,则结果为0
行列式的计算
二阶计算
主对角线乘积减去副对角线乘积
∣ 1 2 3 4 ∣ = 1 × 3 − 2 × 2 = − 1 \left|\begin{matrix} 1&2\\ 3&4 \end{matrix}\right|=1\times3-2\times2=-1 ∣∣∣∣1324∣∣∣∣=1×3−2×2=−1
∣ 3 4 5 6 ∣ = 3 × 6 − 4 × 5 = − 2 \left|\begin{matrix} 3&4\\ 5&6 \end{matrix}\right|=3\times6-4\times5=-2 ∣∣∣∣3546∣∣∣∣=3×6−4×5=−2
普通多阶行列式计算
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \left|\begin{matrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{matrix}\right|=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} ∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31
∣ 1 2 3 2 3 4 4 5 7 ∣ = r 2 − 2 r 1 ∣ 1 2 3 2 − 2 × 1 3 − 2 × 2 4 − 2 × 3 4 5 7 ∣ = ∣ 1 2 3 0 − 1 − 2 4 5 7 ∣ = r 3 − 4 r 1 ∣ 1 2 3 0 − 1 − 2 4 − 4 × 1 5 − 4 × 2 7 − 4 × 3 ∣ = ∣ 1 2 3 0 − 1 − 2 0 − 3 − 5 ∣ = r 3 − 3 r 2 ∣ 1 2 3 0 − 1 − 2 0 − 3 − 3 × ( − 1 ) − 5 − 3 × ( − 2 ) ∣ = ∣ 1 2 3 0 − 1 − 2 0 0 1 ∣ = 1 × ( − 1 ) × 1 = − 1 \left|\begin{matrix} 1&2&3\\ 2&3&4\\ 4&5&7 \end{matrix}\right| \xlongequal[]{r_2-2r_1} \left|\begin{matrix} 1&2&3\\ 2-2\times1&3-2\times2&4-2\times3\\ 4&5&7 \end{matrix}\right| =\left|\begin{matrix} 1&2&3\\ 0&-1&-2\\ 4&5&7 \end{matrix}\right|\\ \xlongequal[]{r_3-4r_1} \left|\begin{matrix} 1&2&3\\ 0&-1&-2\\ 4-4\times1&5-4\times2&7-4\times3 \end{matrix}\right| =\left|\begin{matrix} 1&2&3\\ 0&-1&-2\\ 0&-3&-5 \end{matrix}\right|\\\xlongequal[]{r_3-3r_2} \left|\begin{matrix} 1&2&3\\ 0&-1&-2\\ 0&-3-3\times(-1)&-5-3\times(-2) \end{matrix}\right| =\left|\begin{matrix} 1&2&3\\ 0&-1&-2\\ 0&0&1 \end{matrix}\right|\\=1\times(-1)\times1=-1 ∣∣∣∣∣∣124235347∣∣∣∣∣∣r2−2r1∣∣∣∣∣∣12−2×1423−2×2534−2×37∣∣∣∣∣∣=∣∣∣∣∣∣1042−153−27∣∣∣∣∣∣r3−4r1∣∣∣∣∣∣104−4×12−15−4×23−27−4×3∣∣∣∣∣∣=∣∣∣∣∣∣1002−1−33−2−5∣∣∣∣∣∣r3−3r2∣∣∣∣∣∣1002−1−3−3×(−1)3−2−5−3×(−2)∣∣∣∣∣∣=∣∣∣∣∣∣1002−103−21∣∣∣∣∣∣=1×(−1)×1=−1
特殊多阶行列式计算
公式①
若多阶行列式左对角线下都为0,则结果为左对角线乘积
∣ 1 2 3 0 5 6 0 0 9 ∣ = 1 × 5 × 9 = 45 \left|\begin{matrix} 1&2&3\\ 0&5&6\\ 0&0&9 \end{matrix}\right| =1\times5\times9=45 ∣∣∣∣∣∣100250369∣∣∣∣∣∣=1×5×9=45
∣ 1 2 3 4 0 6 7 8 0 0 11 12 0 0 0 16 ∣ = 1 × 6 × 12 × 16 = 1152 \left|\begin{matrix} 1&2&3&4\\ 0&6&7&8\\ 0&0&11&12\\ 0&0&0&16 \end{matrix}\right| =1\times6\times12\times16=1152 ∣∣∣∣∣∣∣∣1000260037110481216∣∣∣∣∣∣∣∣=1×6×12×16=1152
公式②
( r n , c n ) ∣ x a . . . a a x . . . a . . . . . . . . . . . . a a . . . x ∣ = ( x − a ) n + 1 [ x + ( n + 1 ) ⋅ a ] (r_n,c_n)\left|\begin{matrix} x&a&...&a\\ a&x&...&a\\ ...&...&...&...\\ a&a&...&x \end{matrix}\right| =(x-a)^{n+1}[x+(n+1)\cdot a] (rn,cn)∣∣∣∣∣∣∣∣xa...aax...a............aa...x∣∣∣∣∣∣∣∣=(x−a)n+1[x+(n+1)⋅a]
例子:
∣ 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 ∣ = ( 2 − 3 ) 4 − 1 × [ 2 + ( 4 − 1 ) × 3 ] = − 11 \left|\begin{matrix} 2&3&3&3\\ 3&2&3&3\\ 3&3&2&3\\ 3&3&3&2 \end{matrix}\right| =(2-3)^{4-1}\times[2+(4-1)\times3]=-11 ∣∣∣∣∣∣∣∣2333323333233332∣∣∣∣∣∣∣∣=(2−3)4−1×[2+(4−1)×3]=−11
公式③
范德蒙德行列式
∣ 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 . . . . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 ∣ = ∏ n ≥ i > j ≥ 1 ( x i − x j ) = ( x n − x n − 1 ) ( x n − x n − 2 ) ( x n − x n − 3 ) . . . ( x n − x 1 ) ⋅ ( x n − 1 − x n − 2 ) ( x n − 1 − x n − 3 ) . . . ( x n − 1 − x 1 ) . . . ⋅ ( x 2 − x 1 ) \left|\begin{matrix} 1&1&...&1\\ x_1&x_2&...&x_n\\ x_1^2&x_2^2&...&x_n^2\\ ...&...&...&...\\ x_1^{n-1}&x_2^{n-1}&...&x_n^{n-1} \end{matrix}\right| \left.\begin{matrix} =\prod_{n\geq i> j\geq 1}(x_i-x_j) \\=(x_n-x_{n-1})(x_n-x_{n-2})(x_n-x_{n-3})...(x_n-x_1)\cdot\\(x_{n-1}-x_{n-2})(x_{n-1}-x_{n-3})...(x_{n-1}-x_1)...\\\cdot(x_2-x_1) \end{matrix}\right. ∣∣∣∣∣∣∣∣∣∣1x1x12...x1n−11x2x22...x2n−1...............1xnxn2...xnn−1∣∣∣∣∣∣∣∣∣∣=∏n≥i>j≥1(xi−xj)=(xn−xn−1)(xn−xn−2)(xn−xn−3)...(xn−x1)⋅(xn−1−xn−2)(xn−1−xn−3)...(xn−1−x1)...⋅(x2−x1)
例子:
∣ 1 1 1 1 3 4 5 6 3 2 4 2 5 2 6 2 3 3 4 3 5 3 6 3 ∣ = ( 6 − 5 ) × ( 6 − 4 ) × ( 6 − 3 ) × ( 5 − 4 ) × ( 5 − 3 ) × ( 4 − 3 ) = 12 \left|\begin{matrix} 1&1&1&1\\ 3&4&5&6\\ 3^2&4^2&5^2&6^2\\ 3^3&4^3&5^3&6^3 \end{matrix}\right| \left.\begin{matrix} =(6-5)\times(6-4)\times(6-3)\times(5-4)\\\times(5-3)\times(4-3)=12 \end{matrix}\right. ∣∣∣∣∣∣∣∣133233144243155253166263∣∣∣∣∣∣∣∣=(6−5)×(6−4)×(6−3)×(5−4)×(5−3)×(4−3)=12
公式④
1.两行或列相同或成比例时,行列式为0
2.某行或列为两项相加减时,行列式可拆分成两个行列式相加减
例子:
∣ 1 2 3 4 2 4 6 8 3 4 5 6 7 8 9 10 ∣ = 0 \left|\begin{matrix} 1&2&3&4\\ 2&4&6&8\\ 3&4&5&6\\ 7&8&9&10 \end{matrix}\right|=0 ∣∣∣∣∣∣∣∣12372448365948610∣∣∣∣∣∣∣∣=0
∣ 1 2 + a 3 4 2 4 + b 6 8 3 4 + c 5 6 7 8 + d 9 10 ∣ = ∣ 1 2 3 4 2 4 6 8 3 4 5 6 7 8 9 10 ∣ + ∣ 1 a 3 4 2 b 6 8 3 c 5 6 7 d 9 10 ∣ \left|\begin{matrix} 1&2+a&3&4\\ 2&4+b&6&8\\ 3&4+c&5&6\\ 7&8+d&9&10 \end{matrix}\right| =\left|\begin{matrix} 1&2&3&4\\ 2&4&6&8\\ 3&4&5&6\\ 7&8&9&10 \end{matrix}\right| +\left|\begin{matrix} 1&a&3&4\\ 2&b&6&8\\ 3&c&5&6\\ 7&d&9&10 \end{matrix}\right| ∣∣∣∣∣∣∣∣12372+a4+b4+c8+d365948610∣∣∣∣∣∣∣∣=∣∣∣∣∣∣∣∣12372448365948610∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣1237abcd365948610∣∣∣∣∣∣∣∣
余子式M与代数余子式A
余子式(M)与代数余子式(A)
例子:
∣ 1 2 3 5 6 7 9 10 11 ∣ \left|\begin{matrix} 1&2&3\\ 5&6&7\\ 9&10&11 \end{matrix}\right| ∣∣∣∣∣∣15926103711∣∣∣∣∣∣
M 23 = ∣ 1 2 9 10 ∣ = − 8 M 12 = ∣ 5 7 9 11 ∣ = − 8 M_{23}=\left|\begin{matrix}1&2\\9&10\end{matrix}\right|=-8 \qquad M_{12}=\left|\begin{matrix}5&7\\9&11\end{matrix}\right|=-8 M23=∣∣∣∣19210∣∣∣∣=−8M12=∣∣∣∣59711∣∣∣∣=−8
A 23 = ( − 1 ) 2 + 3 M 23 = 8 A 12 = ( − 1 ) 1 + 2 M 12 = 8 A_{23}=(-1)^{2+3}M_{23}=8 \qquad A_{12}=(-1)^{1+2}M_{12}=8 A23=(−1)2+3M23=8A12=(−1)1+2M12=8
按行或列展开法则
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n ( 第 i 行 ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}(第i行) D=ai1Ai1+ai2Ai2+...+ainAin(第i行)
D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j ( 第 j 列 ) D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}(第j列) D=a1jA1j+a2jA2j+...+anjAnj(第j列)
例子:
∣ 1 2 3 5 6 7 9 10 11 ∣ = a 11 A 11 + a 12 A 12 + a 13 A 13 = 1 × ( − 1 ) 1 + 1 × ∣ 6 7 10 11 ∣ + 2 × ( − 1 ) 1 + 2 × ∣ 5 7 9 11 ∣ + 2 × ( − 1 ) 1 + 3 × ∣ 5 6 9 10 ∣ \left|\begin{matrix} 1&2&3\\ 5&6&7\\ 9&10&11 \end{matrix}\right| =a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}=1\times(-1)^{1+1}\times \left|\begin{matrix}6&7\\10&11\end{matrix}\right|\\ +2\times(-1)^{1+2}\times \left|\begin{matrix}5&7\\9&11\end{matrix}\right| +2\times(-1)^{1+3}\times \left|\begin{matrix}5&6\\9&10\end{matrix}\right| ∣∣∣∣∣∣15926103711∣∣∣∣∣∣=a11A11+a12A12+a13A13=1×(−1)1+1×∣∣∣∣610711∣∣∣∣+2×(−1)1+2×∣∣∣∣59711∣∣∣∣+2×(−1)1+3×∣∣∣∣59610∣∣∣∣
∣ 1 2 3 4 0 5 6 0 7 ∣ = 2 × ( − 1 ) 1 + 2 × ∣ 4 5 6 7 ∣ = − 2 × ( 28 − 30 ) = 4 \left|\begin{matrix} 1&2&3\\ 4&0&5\\ 6&0&7 \end{matrix}\right| =2\times(-1)^{1+2}\times\left|\begin{matrix}4&5\\6&7\end{matrix}\right| =-2\times(28-30)=4 ∣∣∣∣∣∣146200357∣∣∣∣∣∣=2×(−1)1+2×∣∣∣∣4657∣∣∣∣=−2×(28−30)=4
多个M或A相加减
找到A下角标对应行列中的位置,用A的系数替换,算出结果即可
例子:
已 知 : ∣ 1 2 3 4 2 4 6 8 3 6 5 6 7 9 9 10 ∣ 已知:\left|\begin{matrix} 1&2&3&4\\ 2&4&6&8\\ 3&6&5&6\\ 7&9&9&10 \end{matrix}\right| 已知:∣∣∣∣∣∣∣∣12372469365948610∣∣∣∣∣∣∣∣
则 3 A 11 + 4 A 12 + 5 A 13 + 6 A 14 = ∣ 3 4 5 6 2 4 6 8 3 6 5 6 7 9 9 10 ∣ 则3A_{11}+4A_{12}+5A_{13}+6A_{14}= \left|\begin{matrix} 3&4&5&6\\ 2&4&6&8\\ 3&6&5&6\\ 7&9&9&10 \end{matrix}\right| 则3A11+4A12+5A13+6A14=∣∣∣∣∣∣∣∣32374469565968610∣∣∣∣∣∣∣∣
若有M,则将M转化为A进行计算
3 M 11 + 4 M 21 + 5 M 31 + 6 M 41 3M_{11}+4M_{21}+5M_{31}+6M_{41} 3M11+4M21+5M31+6M41
A 11 = ( − 1 ) 1 + 1 ⋅ M 11 = M 11 → M 11 = A 11 A_{11}=(-1)^{1+1}\cdot M_{11}=M_{11}\qquad\rightarrow\qquad M_{11}=A_{11} A11=(−1)1+1⋅M11=M11→M11=A11
A 21 = ( − 1 ) 2 + 1 ⋅ M 21 = − M 21 → M 21 = − A 21 A_{21}=(-1)^{2+1}\cdot M_{21}=-M_{21}\qquad\rightarrow\qquad M_{21}=-A_{21} A21=(−1)2+1⋅M21=−M21→M21=−A21
A 31 = ( − 1 ) 1 + 1 ⋅ M 31 = M 31 → M 31 = A 31 A_{31}=(-1)^{1+1}\cdot M_{31}=M_{31}\qquad\rightarrow\qquad M_{31}=A_{31} A31=(−1)1+1⋅M31=M31→M31=A31
A 41 = ( − 1 ) 2 + 1 ⋅ M 41 = − M 41 → M 41 = − A 41 A_{41}=(-1)^{2+1}\cdot M_{41}=-M_{41}\qquad\rightarrow\qquad M_{41}=-A_{41} A41=(−1)2+1⋅M41=−M41→M41=−A41
3 M 11 + 4 M 21 + 5 M 31 + 6 M 41 = 3 A 11 − 4 A 21 + 5 A 31 − 6 A 41 3M_{11}+4M_{21}+5M_{31}+6M_{41}=3A_{11}-4A_{21}+5A_{31}-6A_{41} 3M11+4M21+5M31+6M41=3A11−4A21+5A31−6A41
给一方程组,判断其解的情况
方程组 | D≠0 | D=0 |
---|---|---|
齐次 | 只有一组零解 | 有零解与非零解 |
非齐次 | 只有一组非零解 | 有多个解或无解 |
齐 次 : { x 1 + 2 x 2 + 3 x 3 = 0 4 x 1 + 5 x 2 + 6 x 3 = 0 7 x 1 + 8 x 2 + 9 x 3 = 0 非 齐 次 : { x 1 + 2 x 2 + 3 x 3 = 1 4 x 1 + 5 x 2 + 6 x 3 = 2 7 x 1 + 8 x 2 + 9 x 3 = 3 齐次:\left\{\begin{matrix} x_1+2x_2+3x_3=0\\ 4x_1+5x_2+6x_3=0\\ 7x_1+8x_2+9x_3=0 \end{matrix}\right. \qquad 非齐次:\left\{\begin{matrix} x_1+2x_2+3x_3=1\\ 4x_1+5x_2+6x_3=2\\ 7x_1+8x_2+9x_3=3 \end{matrix}\right. 齐次:⎩⎨⎧x1+2x2+3x3=04x1+5x2+6x3=07x1+8x2+9x3=0非齐次:⎩⎨⎧x1+2x2+3x3=14x1+5x2+6x3=27x1+8x2+9x3=3
D的计算:将X前系数组合成为行列式计算值
{ x 1 + 2 x 2 + 3 x 3 = 0 4 x 1 + 6 x 3 = 0 7 x 1 + 8 x 2 = 0 D = ∣ 1 2 3 4 0 6 7 8 0 ∣ \left\{\begin{matrix} x_1+2x_2+3x_3=0\\ 4x_1+6x_3=0\\ 7x_1+8x_2=0 \end{matrix}\right. \qquad D= \left|\begin{matrix} 1&2&3\\4&0&6\\7&8&0 \end{matrix}\right| ⎩⎨⎧x1+2x2+3x3=04x1+6x3=07x1+8x2=0D=∣∣∣∣∣∣1472083