Given an integer n, you have to find
lcm(1, 2, 3, ..., n)
lcm means least common multiple. For example lcm(2, 5, 4) = 20, lcm(3, 9) = 9, lcm(6, 8, 12) = 24.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (2 ≤ n ≤ 108).
Output
For each case, print the case number and lcm(1, 2, 3, ..., n). As the result can be very big, print the result modulo 232.
Sample Input
5
10
5
200
15
20
Sample Output
Case 1: 2520
Case 2: 60
Case 3: 2300527488
Case 4: 360360
Case 5: 232792560
题目大意:给出几个n,求出1到n的最小公倍数
思路概括:
1、埃拉托斯特尼筛法,这里有个不错的图来表示
一百以内有 25 个素数,它们分别是
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
一千以内有 168 个素数,最后几个是907,911,919,929,937,941,947,953,967,971,977,983,991,997。
一万以内有 1229 个素数,最后几个是9901,9907,9923,9929,9931,9941,9949,9967,9973。
十万以内有 9592 个素数,最后几个是99901,99907,99923,99929,99961,99971,99989,99991。
一百万以内有 78498 个素数,最后几个是999907,999917,999931,999953,999959,999961,999979,999983。
一千万以内有 664579 个素数,最后几个是9999901,9999907,9999929,9999931,9999937,9999943,9999971,9999973,9999991。
一亿以内有 5761455 个素数,最后几个是99999931,99999941,99999959,99999971,99999989。
十亿以内有 50847534 个素数,最后几个是999999929,999999937。
一百亿以内有 455052511 个素数,最后几个是9999999929,9999999943,9999999967。
比较好的思路是把主要的数据先都预处理出来。
定义L(x)为 1, 2, 3, .., x的LCM
则有如下规律:
L(1) = 1L(x+1) = { L(x) * p if x+1 is a perfect power of prime p
{ L(x) otherwise
也就是当x+1是素数p的整数次幂的时候,L(x+1)=L(x)*p;举例如下:L(2) = 1 * 2
L(3) = 1 * 2 * 3
L(4) = 1 * 2 * 3 * 2 // because 4 = 2^2
L(5) = 1 * 2 * 3 * 2 * 5
L(6) = 1 * 2 * 3 * 2 * 5 // 6 is not a perfect power of a prime
L(7) = 1 * 2 * 3 * 2 * 5 * 7
于是我们可以先把素数连乘的结果预处理出来,然后再对每一个素数的整数次幂根据n的不同进行操作。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define lt k<<1
#define rt k<<1|1
#define lowbit(x) x&(-x)
#define lson l,mid,lt
#define rson mid+1,r,rt
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define mem(a, b) memset(a, b, sizeof(a))
//#define int ll
const double pi = acos(-1.0);
const double eps = 1e-6;
const double C = 0.57721566490153286060651209;
const ll mod = 1ll << 32;
const int inf = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
const uint INF = 0xffffffff;
const int maxn = 1e8 + 5;
unsigned int pri[5800000];
unsigned int sum[5800000];
bitset<maxn> vis;
int cnt = 1;
void prime()//欧拉筛
{
pri[0] = 0;
for(int i=2; i<maxn; i++)
{
if(!vis[i]) pri[cnt++] = i;
for(int j=1; j<cnt && i * pri[j] < maxn; j++)
{
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
}
}
sum[0] = 1;
for(int i=1; i<cnt; i++)//前缀积
{
sum[i] = sum[i-1] * pri[i];
}
}
ll q_mod(int a, int b)//快速幂
{
ll ans = 1;
ll base = a;
while(b)
{
if(b & 1) ans = (ans * base) % mod;
base = (base * base) % mod;
b >>= 1;
}
return ans;
}
int main()
{
prime();
int t;
cin >> t;
int k = 1;
while(t--)
{
int n;
cin >> n;
int pos = upper_bound(pri+1, pri+cnt, n) - pri - 1;//二分查找第一个比n大的数,然后减去1,就小于等于n
ll ans = sum[pos] % mod;
for(int i=1;i<cnt && pri[i] * pri[i] <= n;i++)
{
int x = n;
int y = 0;
while(x/pri[i])//每个素数的最大次方
{
x /= pri[i];
y++;
}
ans = q_mod(pri[i], --y) * ans % mod;
}
cout << "Case " << k++ << ": ";
cout << ans % mod << endl;
}
return 0;
}