Python和C++赋值共享内存、Python函数传址传值、一些其他的遇到的bug

1、Numpy共享内存的情况:

array1 = np.array([1, 2, 3])
array2 = array1
array2[0] = 0       # array1也会跟着改变,就地操作
array2 = array2 * 2 # array2不会跟着改变,属于非就地操作,会创建一个新的地址给array2
array2 = array1[:]
array2 = array1.view()
array2 = array1.reshape((3, 1))

使用array.copy() 创建深拷贝以避免这种问题

非就地操作:会创建一个新的数组,并将其赋值给 array2(指向的地址发生改变)。在这种情况下,array2 将引用一个新的数组,原来的 array2 不再共享原始的内存。如下,都不会影响到array1:

array2 = -array1 # 有运算时不共享(会创建一个新的数组给array2)
array2[0] = 0    # array1不会跟着改变
array2 = array1		# 共享内存
array2 = array2 + 1 # array1不会改变(此时创建一个新的数组给array2)。但array2 += 1会影响array1,自增是就地(in-place)操作
array2 = array1
array2[0] = -array2[0] # 就地操作,1会改
array2[:] = -array2[:] # 就地操作,1会改
array2 = -array2       # 非就地操作,1不改

2、pytorch共享内存的情况:

和Numpy完全一样

tensor1 = torch.tensor([1, 2, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值