【题解】LightOJ1259 Goldbach`s Conjecture 线性筛

博客介绍了Goldbach's Conjecture这一未解决问题,并提供了一个检查不超过107的偶数是否可以表示为两个质数之和的线性筛算法。通过输入测试用例数量和偶数n,输出符合条件的质数对组合数量。样例输出显示了对于6和4这两个数,分别有1种组合方式满足条件。

题目链接

Description

Goldbach’s conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

1) Both a and b are prime

2) a + b = n

3) a ≤ b

Sample Input

2

6

4

Sample Output

Case 1: 1

Case 2: 1

Note

1.An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, …


我居然能想到n²的枚举……真是为我智商捉急

#include<cstdio>
const int N=1e7+10;
int t,prime[N/2],p,n,ca;
bool iscomp[N];
void primetable()
{
    for(int i=2;i<N;i++)
    {
        if(!iscomp[i])prime[p++]=i;
        for(int j=0;j<p&&prime[j]*i<N;j++)
        {
            iscomp[i*prime[j]]=1;
            if(i%prime[j]==0)break;
        }
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    primetable();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        int cnt=0;
        for(int i=0;prime[i]<=n/2;i++)
            if(!iscomp[n-prime[i]])cnt++;
        printf("Case %d: %d\n",++ca,cnt);
    }
    return 0;
}

总结

线性筛出素数之后直接暴力就好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值