师兄整理的列表:
https://github.com/Guo-Yunzhe/Adversarial_Learning_Paper
https://gitee.com/guoyunzhe/Adversarial_Learning_Survey
FGSM生成对抗样本的试写:
https://github.com/Guo-Yunzhe/adversarial_machine_learning
已看完:
* Intriguing Properties of Neural Networks,2013 (对抗样本在NN)
【https://www.cnblogs.com/lainey/p/8552422.html】
深度学习笔记 (bp,卷积层,池化层,全连接层,激活函数层,softmax层的前向反向实现)(看完文字)
【https://blog.youkuaiyun.com/l691899397/article/category/6366964】
* Explaining and Harnessing Adversarial Examples (如何生成对抗样本?FGSM)
【https://zhuanlan.zhihu.com/p/32784766 https://zhuanlan.zhihu.com/p/33875223 文章总结】【https://blog.youkuaiyun.com/u014038273/article/details/78773515 FGSM小结】
* Visualizing and Understanding Convolutional Networks.CVPR2014 (CNN可视化)
【https://blog.youkuaiyun.com/tina_ttl/article/details/52048765】
* Adversarial Machine Learning, 2011(2011年的一个综述,对攻击机器学习的方法/目的作的一个分类/防御者弱点分析/攻击者限制)
* Adversarial Machine Learning at Scale, ICLR 2017(对抗学习在大尺度数据集上的应用,增加鲁棒性,标签泄露)
【https://blog.youkuaiyun.com/kearney1995/article/details/79789899】
* Adversarial examples in the physical world(上一篇的姊妹篇,比较的生成对抗样本的方法类型差不多,有更详细的表述。物理世界中的对抗样本,有打印重照、亮度对比度等调整)
【https://blog.youkuaiyun.com/u010710787/article/details/78916762】