Docker Desktop简介

Docker Desktop

一、简介

Docker Desktop是可以部署在windows运行docker的应用服务,其基于windos的Hyper-V服务和WSL2内核在windos上创建一个子系统(linux),从而实现其在windows上运行docker。

二、部署

1.开启Hyper-V(自行百度)

2.安装WSL2内核

https://docs.microsoft.com/zh-cn/windows/wsl/install-manual#step-4---download-the-linux-kernel-update-package

3.安装docker-compose

https://github.com/docker/compose/releases
三、配置

1.配置镜像加速

{
  "registry-mirrors": [
    "https://hub-mirror.c.163.com",
    "https://1rlt72n0.mirror.aliyuncs.com",
    "https://registry.docker-cn.com",
    "https://mirror.ccs.tencentyun.com",
    "https://mirror.baidubce.com"
  ]
}

2.使用docker-compose管理常用的服务

version: '3'
services:
  mysql:
    environment:
      MYSQL_ROOT_HOST: "%"
      MYSQL_ROOT_PASSWORD: root
      MYSQL_USER: wanchen # 创建新用户
      MYSQL_PASSWORD: wanchen # 新用户的密码
    # restart: always
    container_name: mysql8.0
    image: mysql:v8
    ports:
      - 3306:3306
    command:
      --default-authentication-plugin=mysql_native_password
      --character-set-server=utf8mb4
      --collation-server=utf8mb4_general_ci
    volumes:
      - D:\ku\dockerku\contains\mysql\conf:/etc/mysql/conf.d
      - D:\ku\dockerku\contains\mysql\data:/var/lib/mysql
      
  redis:
    image: redis:v7
    ports:
      - 6379:6379
    # restart: always
    container_name: redis7
    hostname: redis
    volumes:
      - D:\ku\dockerku\contains\redis\data:/data
      - D:\ku\dockerku\contains\redis\conf:/etc/redis/redis.conf
    command:
      --appendonly yes
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 一个完整的Docker有以下几个部分组成: DockerClient客户端 Docker Daemon守护进程 Docker Image镜像 DockerContainer容器 [2] 起源 Docker 是 PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源。 Docker自2013年以来非常火热,无论是从 github 上的代码活跃度,还是Redhat在RHEL6.5中集成对Docker的支持, 就连 Google 的 Compute Engine 也支持 docker 在其之上运行。 一款开源软件能否在商业上成功,很大程度上依赖三件事 - 成功的 user case(用例), 活跃的社区和一个好故事。 dotCloud 之家的 PaaS 产品建立在docker之上,长期维护且有大量的用户,社区也十分活跃,接下来我们看看docker的故事。 环境管理复杂 - 从各种OS到各种中间件到各种app, 一款产品能够成功作为开发者需要关心的东西太多,且难于管理,这个问题几乎在所有现代IT相关行业都需要面对。 云计算时代的到来 - AWS的成功, 引导开发者将应用转移到 cloud 上, 解决了硬件管理的问题,然而中间件相关的问题依然存在 (所以openstack HEAT和 AWS cloudformation 都着力解决这个问题)。开发者思路变化提供了可能性。 虚拟化手段的变化 - cloud 时代采用标配硬件来降低成本,采用虚拟化手段来满足用户按需使用的需求以及保证可用性和隔离性。然而无论是KVM还是Xen在 docker 看来,都在浪费资源,因为用户需要的是高效运行环境而非OS, GuestOS既浪费资源又难于管理, 更加轻量级的LXC更加灵活和快速 LXC的移动性 - LXC在 linux 2.6 的 kernel 里就已经存在了,但是其设计之初并非为云计算考虑的,缺少标准化的描述手段和容器的可迁移性,决定其构建出的环境难于迁移和标准化管理(相对于KVM之类image和snapshot的概念)。docker 就在这个问题上做出实质性的革新。这是docker最独特的地方。 VM技术和容器技术对比 VM技术和容器技术对比 面对上述几个问题,docker设想是交付运行环境如同海运,OS如同一个货轮,每一个在OS基础上的软件都如同一个集装箱,用户可以通过标准化手段自由组装运行环境,同时集装箱的内容可以由用户自定义,也可以由专业人员制造。这样,交付一个软件,就是一系列标准化组件的集合的交付,如同乐高积木,用户只需要选择合适的积木组合,并且在最顶端署上自己的名字(最后一个标准化组件是用户的app)。这也就是基于docker的PaaS产品的原型。
### Transformer 模型详解 #### 一、Transformer 整体架构 Transformer 是一种基于自注意力机制(Self-Attention Mechanism)的神经网络模型,旨在解决序列数据处理中的长期依赖问题。该模型摒弃了传统的循环神经网络(RNN) 和卷积神经网络(CNN),完全依靠自注意力机制来捕捉输入和输出之间的全局依赖关系[^1]。 整个架构由编码器(Encoder)和解码器(Decoder)两部分组成: - **编码器**:负责接收输入序列并将其转换成高维向量表示; - **解码器**:根据编码器产生的上下文信息生成目标序列; 两者之间通过多头自注意层(Multi-head Self-Attention Layer)连接,在每一层内部还包含了前馈神经网络(Feed Forward Neural Network, FFN)[^2]。 ```mermaid graph LR; A[Input Sequence] --> B{Encoder Stack}; subgraph Encoder Layers C[MHSA (Multi Head Self Attention)] --- D[Add & Norm]; E[FFN (Feed Forward Networks)] --- F[Add & Norm]; end G{Decoder Stack} <-- H[Memory from Encoders]; I[Output Sequence] <-- J{Decoder Layers} ``` #### 二、工作流程解析 当给定一个源语言句子作为输入时,经过分词后得到一系列token组成的列表。这些tokens会被映射到对应的嵌入(embedding)空间中形成矩阵形式的数据。随后进入多个相同的编码单元堆叠而成的编码栈内进行特征提取操作。每个编码单元主要包含两个子模块——一个多头自关注层用于计算query(Q), key(K), value(V)三者间的相似度得分,并据此调整value权重获得新的context vector; 另一个是全连接前馈网络用来进一步变换维度大小以便更好地表达语义信息。 对于翻译任务而言,则需额外构建一组类似的解码组件以逐步预测下一个可能的目标单词直至结束符为止。值得注意的是,在训练阶段为了加速收敛速度通常会采用teacher forcing技术即利用真实的上一步骤输出而非当前时刻所估计的结果参与后续迭代更新过程。 #### 三、核心特性阐述 ##### 自注意力机制 这是Transformer区别于其他传统RNN/CNN的最大亮点之一。它允许模型在同一时间步长下同时考虑所有位置的信息而不仅仅是相邻几个节点的影响范围。具体实现方式就是让每一个position都能与其他任意一处建立联系并通过softmax函数规范化后的概率分布加权求和最终得出综合考量过全部因素的新状态描述。 ##### 多头设计 考虑到单一head可能会丢失某些重要的局部模式匹配机会因此引入了multi-head策略使得不同heads可以专注于特定类型的关联性挖掘从而提高整体表现力。简单来说就是在同一层次里平行运行若干组独立却又相互补充的小规模self-attention units然后把它们各自的输出拼接起来再送往下一层继续加工处理直到最后一刻才汇总输出最终结果。 ##### 前馈神经网络 除了上述提到的核心部件之外每层还会配备有一个简单的线性变换+ReLU激活构成的标准MLP结构充当非线性的引入手段增强系统的表征能力同时也起到一定的正则化作用防止过拟合现象发生。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值