P1265 公路修建 最小生成树
题目描述
某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。
修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。
政府审批的规则如下:
(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;
(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;
(3)其他情况的申请一律同意。
一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。
当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。
你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。
输入输出格式
输入格式:
第一行一个整数n,表示城市的数量。(n≤5000)
以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)
输出格式:
一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)
输入输出样例
说明
修建的公路如图所示:
由于保证有唯一解,所以规则2 也就没用了;
对于完全图来说,prime比kruskal方便许多
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }
/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n;
struct node {
double x, y;
// double Dis;
}e[maxn];
double dist[maxn];
bool vis[maxn];
double ans;
double dis(int x, int y) {
return 1.0*sqrt((e[x].x - e[y].x)*(e[x].x - e[y].x) + (e[x].y - e[y].y)*(e[x].y - e[y].y));
}
int main()
{
// ios::sync_with_stdio(0);
n = rd();
for (int i = 1; i <= n; i++) {
rdlf(e[i].x); rdlf(e[i].y); dist[i] = inf;
}
dist[1] = 0; int pos = 0;
for (int i = 1; i <= n; i++) {
double minn = inf;
for (int j = 1; j <= n; j++) {
if (dist[j] < minn && !vis[j]) {
pos = j; minn = dist[j];
}
}
ans += minn; vis[pos] = 1;
for (int j = 1; j <= n; j++) {
double tmp = dis(pos, j);
dist[j] = min(dist[j], tmp);
}
}
printf("%.2lf\n", 1.0*ans);
return 0;
}