51 Nod 1042 数位dp
1042 数字0-9的数量
给出一段区间a-b,统计这个区间内0-9出现的次数。
比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次。
输入
两个数a,b(1 <= a <= b <= 10^18)
输出
输出共10行,分别是0-9出现的次数
输入样例
10 19
输出样例
1 11 1 1 1 1 1 1 1 1
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 20005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }
/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int len;
ll a, b;
int num[20];
ll dp[20][20002];
ll dfs(int pos, int limit, int lead, ll sum,int dig) {
if (pos == 0)return sum;
if (!limit&&lead&&dp[pos][sum] != -1)return dp[pos][sum];
ll ans = 0;
int up = limit ? num[pos] : 9;
for (int i = 0; i <= up; i++) {
ans += dfs(pos - 1, limit && (i == up), lead || i, sum + ((i == dig)&&(lead||i)), dig);
}
if (lead && !limit)dp[pos][sum] = ans;
return ans;
}
ll sol(ll a, ll dig) {
mclr(dp, -1); len = 0;
while (a) {
num[++len] = a % 10; a /= 10;
}
ll ans = 0;
ans = dfs(len, 1, 0, 0, dig);
return ans;
}
int main()
{
// ios::sync_with_stdio(0);
rdllt(a); rdllt(b);
for (int i = 0; i <= 9; i++) {
printf("%lld\n", sol(b, i) - sol(a - 1, i));
}
return 0;
}